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ii TETRACHLOROETHYLENE 

DISCLAIMER  

Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic 
Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human 
Services. 

This information is distributed solely for the purpose of pre dissemination public comment under 
applicable information quality guidelines.  It has not been formally disseminated by the Agency for Toxic 
Substances and Disease Registry.  It does not represent and should not be construed to represent any 
agency determination or policy. 
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UPDATE STATEMENT  

A Toxicological Profile for Tetrachloroethylene was released in 1996. This present edition supersedes 
any previously released draft or final profile.  

Toxicological profiles are revised and republished as necessary.  For information regarding the update 
status of previously released profiles, contact ATSDR at: 

Agency for Toxic Substances and Disease Registry  
Division of Toxicology and Human Health Sciences  

Environmental Toxicology Branch  
1600 Clifton Road NE  

Mailstop F-57  
Atlanta, Georgia 30333  
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v TETRACHLOROETHYLENE 

FOREWORD  

This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic 
Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA).  The 
original guidelines were published in the Federal Register on April 17, 1987.  Each profile will be revised 
and republished as necessary. 

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects 
information for these toxic substances described therein.  Each peer-reviewed profile identifies and 
reviews the key literature that describes a substance's toxicologic properties.  Other pertinent literature is 
also presented, but is described in less detail than the key studies. The profile is not intended to be an 
exhaustive document; however, more comprehensive sources of specialty information are referenced. 

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile 
begins with a public health statement that describes, in nontechnical language, a substance's relevant 
toxicological properties.  Following the public health statement is information concerning levels of 
significant human exposure and, where known, significant health effects.  The adequacy of information to 
determine a substance's health effects is described in a health effects summary.  Data needs that are of 
significance to protection of public health are identified by ATSDR and EPA. 

Each profile includes the following: 

(A) The examination, summary, and interpretation of available toxicologic information and 
epidemiologic evaluations on a toxic substance to ascertain the levels of significant human 
exposure for the substance and the associated acute, subacute, and chronic health effects; 

(B) A determination of whether adequate information on the health effects of each substance is 
available or in the process of development to determine levels of exposure that present a 
significant risk to human health of acute, subacute, and chronic health effects; and 

(C) Where appropriate, identification of toxicologic testing needed to identify the types or levels 
of exposure that may present significant risk of adverse health effects in humans. 

The principal audiences for the toxicological profiles are health professionals at the Federal, State, and 
local levels; interested private sector organizations and groups; and members of the public.  We plan to 
revise these documents in response to public comments and as additional data become available. 
Therefore, we encourage comments that will make the toxicological profile series of the greatest use. 

Electronic comments may be submitted via: www.regulations.gov. 
Follow the on-line instructions for submitting comments. 

Written comments may also be sent to: 
Agency for Toxic Substances and Disease Registry 
Division of Toxicology and Human Health Sciences 
Environmental Toxicology Branch 

Regular Mailing Address: Physical Mailing Address: 
1600 Clifton Road, N.E. 4770 Buford Highway 
Mail Stop F-57 Building 106, 3rd floor, MS F-57 
Atlanta, Georgia 30333 Chamblee, Georgia 30341 
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vi TETRACHLOROETHYLENE 

The toxicological profiles are developed under the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980, as amended (CERCLA or Superfund).  CERCLA section 
104(i)(1) directs the Administrator of ATSDR to “…effectuate and implement the health related 
authorities” of the statute. This includes the preparation of toxicological profiles for hazardous 
substances most commonly found at facilities on the CERCLA National Priorities List and that pose the 
most significant potential threat to human health, as determined by ATSDR and the EPA. Section 
104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR to prepare a toxicological profile 
for each substance on the list. In addition, ATSDR has the authority to prepare toxicological profiles for 
substances not found at sites on the National Priorities List, in an effort to “…establish and maintain 
inventory of literature, research, and studies on the health effects of toxic substances” under CERCLA 
Section 104(i)(1)(B), to respond to requests for consultation under section 104(i)(4), and as otherwise 
necessary to support the site-specific response actions conducted by ATSDR.  

This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that has been 
peer-reviewed. Staffs of the Centers for Disease Control and Prevention and other Federal scientists have 
also reviewed the profile.  In addition, this profile has been peer-reviewed by a nongovernmental panel 
and is being made available for public review.  Final responsibility for the contents and views expressed 
in this toxicological profile resides with ATSDR. 

Robin M. Ikeda, M.D., M.P.H.  
Acting Assistant Administrator  

Agency for Toxic Substances and Disease Registry  
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vii TETRACHLOROETHYLENE 

QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance.  Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances will find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2:  Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3:  Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (death, systemic, immunologic, reproductive), by route of exposure, and by length 
of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies are 
reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting.  Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Chapter 1 How Can (Chemical X) Affect Children?  
Chapter 1 How Can Families Reduce the Risk of Exposure to (Chemical X)?  
Section 3.7 Children’s Susceptibility  
Section 6.6 Exposures of Children  

Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center 
Phone: 1-800-CDC-INFO (800-232-4636) or 1-888-232-6348 (TTY) 
Internet:  http://www.atsdr.cdc.gov 

The following additional material is available online at www.atsdr.cdc.gov: 

Case Studies in Environmental Medicine—Case Studies are self-instructional publications designed to 
increase primary care provider’s knowledge of a hazardous substance in the environment and to 
aid in the evaluation of potentially exposed patients.  

Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 
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viii TETRACHLOROETHYLENE 

incident. Volumes I and II are planning guides to assist first responders and hospital emergency 
department personnel in planning for incidents that involve hazardous materials.  Volume III— 
Medical Management Guidelines for Acute Chemical Exposures—is a guide for health care 
professionals treating patients exposed to hazardous materials. 

Fact Sheets (ToxFAQs™) provide answers to frequently asked questions about toxic substances. 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace.  Contact:  NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, 
GA 30341-3724 • Phone: 770-488-7000 • FAX: 770-488-7015. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health. Contact: NIOSH, 395 E Street, S.W., Suite 9200, 
Patriots Plaza Building, Washington, DC 20201 • Phone: (202) 245-0625 or 1-800-CDC-INFO 
(800-232-4636). 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone: 919-541-3212. 

Clinical Resources 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone: 202-347-4976 
• FAX:  202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact:  ACOEM, 25 Northwest Point Boulevard, Suite 700, Elk 
Grove Village, IL 60007-1030 • Phone:  847-818-1800 • FAX:  847-818-9266. 
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ix TETRACHLOROETHYLENE 

CONTRIBUTORS 
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Nickolette Roney, M.S.  
Obaid Faroon, Ph.D.  
ATSDR, Division of Toxicology and Human Health Sciences, Atlanta, GA  

Heather Carlson-Lynch, S.M.  
Kim Zaccaria, Ph.D.  
Kelly Salinas, Ph.D.  
H. Danielle Johnson, B.S.  
Mario Citra, Ph.D.  
SRC, Inc., North Syracuse, NY  

THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 

1.	 Health Effects Review. The Health Effects Review Committee examines the health effects 
chapter of each profile for consistency and accuracy in interpreting health effects and classifying 
end points. 

2.	 Minimal Risk Level Review.  The Minimal Risk Level Workgroup considers issues relevant to 
substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each 
profile, and makes recommendations for derivation of MRLs. 

3.	 Data Needs Review. The Environmental Toxicology Branch reviews data needs sections to 
assure consistency across profiles and adherence to instructions in the Guidance. 

4.	 Green Border Review.  Green Border review assures the consistency with ATSDR policy. 
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xi TETRACHLOROETHYLENE 

PEER REVIEW  

A peer review panel was assembled for tetrachloroethylene. The panel consisted of the following 
members: 

1.	 Dr. Rodney R. Dietert, Professor of Immunotoxicology, College of Veterinary Medicine, Cornell 
University, Ithaca, New York; 

2.	 Dr. Kelly G. Pennell, Civil and Environmental Engineering Department, University of 
Massachusetts-Dartmouth, North Dartmouth, Massachusetts; and 

3.	 Jill E. Johnston, Department of Environmental Sciences & Engineering, Gillings School of 
Global Public Health, University of North Carolina, Chapel Hill, North Carolina. 

These experts collectively have knowledge of tetrachloroethylene’s physical and chemical properties, 
toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and 
quantification of risk to humans.  All reviewers were selected in conformity with the conditions for peer 
review specified in Section 104(I)(13) of the Comprehensive Environmental Response, Compensation, 
and Liability Act, as amended. 

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
reviewers' comments and determined which comments will be included in the profile.  A listing of the 
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their 
exclusion, exists as part of the administrative record for this compound.  

The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content.  The responsibility for the content of this profile lies with the ATSDR. 
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1 TETRACHLOROETHYLENE 

1. 	PUBLIC HEALTH STATEMENT FOR 
TETRACHLOROETHYLENE 

Overview 
We define a public health statement and show how it can help you learn about tetrachloroethylene. 

Introduction	 A public health statement summarizes information about a hazardous substance.  The 
information is taken from a toxicological profile developed by the Agency for Toxic 
Substances and Disease Registry’s (ATSDR’s) Division of Toxicology.  A 
toxicological profile is a thorough review of a hazardous substance. 

This toxicological profile examines tetrachloroethylene.  This public health 
statement summarizes the Division of Toxicology and Human Health Science’s 
findings on tetrachloroethylene, describes the effects of exposure to it, and describes 
what you can do to limit that exposure. 

Tetrachloro
ethylene at 
hazardous 
waste sites 

The U.S. Environmental Protection Agency (U.S. EPA) identifies the most serious 
hazardous waste sites in the nation.  U.S. EPA then includes these sites the National 
Priorities List (NPL) and targets it for federal clean-up activities.  U.S. EPA has 
found tetrachloroethylene in at least 945 of the 1,699 current or former NPL sites. 

The total number of NPL sites evaluated for tetrachloroethylene is not known.  But 
the possibility remains that as more sites are evaluated, the number of sites at which 
tetrachloroethylene is found may increase.  This information is important; these 
future sites may be sources of exposure, and exposure to tetrachloroethylene may be 
harmful. 

Tetrachloroethylene is present in many other non-NPL sites due to air, water, and 
soil contamination. The concern for tetrachloroethylene in non-NPL sites is greater 
than that of the NPL sites; the NPL sites represent a small fraction of the total 
hazardous waste sites that have been contaminated with tetrachloroethylene. 

Why a 
tetrachloro-

When a contaminant is released from a large area such as an industrial plant or from 
a container such as a drum or bottle, it enters the environment.  But such a release 

ethylene release 
can be harmful 

doesn’t always lead to exposure.  You can only be exposed to a contaminant when 
you come in contact with it.  That contact—and therefore that exposure—can occur 
when you breathe, eat, or drink the contaminant, or when it touches your skin. 

Even if you’re exposed to tetrachloroethylene, you might not be harmed.  Whether 
you are harmed will depend on such factors as the dose (how much), the duration 
(how long), and how you are exposed.  Harm might also depend on whether you’ve 
been exposed to any other chemicals, as well as your age, sex, diet, family traits, 
lifestyle, and state of health. 
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2 TETRACHLOROETHYLENE 

1.  PUBLIC HEALTH STATEMENT 

A Closer Look at Tetrachloroethylene 

Overview 
This section describes tetrachloroethylene in detail and how you can be exposed to it. 

What is Tetrachloroethylene is a nonflammable colorless liquid. Other names for 
tetrachloro tetrachloroethylene include perchloroethylene, PCE, PERC, tetrachloroethene, and 
ethylene? perchlor.  Most people can smell tetrachloroethylene when it is present in the air at a 

level of 1 part in 1 million parts of air (ppm) or more.  For more information, see 
Chapters 4 and 5. 

How is Tetrachloroethylene is used as a dry cleaning agent and metal degreasing solvent. It 
tetrachloro is also used as a starting material (building block) for making other chemicals and is 
ethylene used? used in some consumer products.  

How does Tetrachloroethylene can be released into the air, water, and soil at places where it is 
tetrachloro produced or used. 
ethylene enter 
the environ
ment? 

Exposure Sources or Pathways Outcome 
Air: Most releases of 
tetrachloroethylene during its use are 
directly to the atmosphere. Much of the 
tetrachloroethylene released into the air 
comes from the dry cleaning industry. 
Some Tetrachloroethylene may be 
released from dry-cleaned or consumer 
products. 

Tetrachloroethylene breaks down very 
slowly in the air and so it can be 
transported long distances in the air. 
The average concentration of 
tetrachloroethylene in the air of the 
United States is typically less than 
1 microgram per cubic meter of air. 

Water: A variety of industries that use 
tetrachloroethylene (such as metal 
degreasing and dry cleaning) produce 
liquid wastes that contain the 
compound, which may then end up at 
waste treatment facilities. 

Tetrachloroethylene evaporates quickly 
from water into air, although some 
tetrachloroethylene may remain in the 
water.  It is generally slow to break 
down in water.  Tetrachloroethylene 
can migrate through groundwater (or 
soil) up into the air of homes and 
buildings through vapor intrusion. 

Soil: Contamination of soil can occur 
when tetrachloroethylene at a waste 
disposal site seeps out of the waste and 
into the soil. 

Tetrachloroethylene may evaporate 
quickly from shallow soils or may filter 
through the soil and into the 
groundwater below.  It is generally 
slow to break down in soil. 
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3 TETRACHLOROETHYLENE 

1.  PUBLIC HEALTH STATEMENT 

How Tetrachloroethylene Can Affect Your Health 

Overview 
This section looks at how tetrachloroethylene enters your body and potential tetrachloroethylene health 
effects found in human and animal studies. 

How Tetrachloroethylene can enter your body from the air, water, or soil. 
tetrachloro
ethylene enters 
your body 

Possible Sources Possible Exposure Pathway 
Air Tetrachloroethylene in air can easily 

enter your body when you breathe it 
in.  Most of the tetrachloroethylene 
that you breathe in will go into your 
bloodstream and into other organs.  A 
small amount of tetrachloroethylene in 
the air can also move through your 
skin and into your bloodstream.  

Water When tetrachloroethylene is found in 
water, it can enter your body when you 
drink or touch the water or when you 
breathe in steam from the water. Most 
of the tetrachloroethylene that you 
breathe in or drink will move from 
your stomach or lungs into your 
bloodstream.  When you touch water 
containing tetrachloroethylene, some 
of it can get through your skin into 
your body, but not as much as when 
you breathe or swallow it. 

Soil You can be exposed to 
tetrachloroethylene in soil when small 
amounts of soil are transferred to your 
mouth accidentally, when your skin 
touches the soil, or when you breathe 
air or dust coming from the soil.  

What happens A small amount of tetrachloroethylene in your blood may get changed into other 
to tetrachloro chemicals. If you are exposed over and over again to tetrachloroethylene, some of it 
ethylene in may be stored in body fat and the amount can build up over time. When the 
your body exposure stops, your body will slowly get rid of the tetrachloroethylene stored in fat. 
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4 TETRACHLOROETHYLENE 

1.  PUBLIC HEALTH STATEMENT 

How If you have tetrachloroethylene in your blood, you will breathe most of it out very 
tetrachloro- quickly. A small amount of tetrachloroethylene in your blood may get changed into 
ethylene leaves other chemicals that leave your body in urine. 
your body 

Tetrachloro- Tetrachloroethylene exposure may harm the nervous system, liver, kidneys, and 
ethylene health reproductive system, and may be harmful to unborn children.  If you are exposed to 
effects tetrachloroethylene, you may also be at a higher risk of getting certain types of 

cancer. 

Short-term 	 If you breathe in air containing a lot of tetrachloroethylene, you may become dizzy 
exposure effects	 or sleepy, develop headaches, and become uncoordinated; exposure to very large 

amounts in the air can cause unconsciousness.  Some people have died after being 
exposed in tanks or other small spaces, or after intentionally breathing in a large 
amount of tetrachloroethylene. 

Long-term 
exposure effects 

People who are exposed for longer periods of time to lower levels of 
tetrachloroethylene in air may have changes in mood, memory, attention, reaction 
time, or vision.  Studies in animals exposed to tetrachloroethylene have shown liver 
and kidney effects, and changes in brain chemistry, but we do not know what these 
findings mean for humans. 

Tetrachloroethylene may have effects on pregnancy and unborn children.  Studies in 
people are not clear on this subject, but studies in animals show problems with 
pregnancy (such as miscarriage, birth defects, and slowed growth of the baby) after 
oral and inhalation exposure. 

Tetrachloro
ethylene and 
cancer 

Exposure to tetrachloroethylene for a long time may lead to a higher risk of getting 
cancer, but the type of cancer that may occur is not well-understood.  Studies in 
humans suggest that exposure to tetrachloroethylene might lead to a higher risk of 
getting bladder cancer, multiple myeloma, or non-Hodgkin’s lymphoma, but the 
evidence is not very strong.  In animals, tetrachloroethylene has been shown to cause 
cancers of the liver, kidney, and blood system.  It is not clear whether these effects 
might also occur in humans, because humans and animals differ in how their bodies 
handle tetrachloroethylene. 

The EPA considers tetrachloroethylene to be “likely to be carcinogenic to humans by 
all routes of exposure” based on suggestive evidence in human studies and clear 
evidence of mononuclear cell leukemia in rats and liver tumors in mice exposed for 
2 years by inhalation or stomach tube.  

The International Agency for Research on Cancer considers tetrachloroethylene 
“probably carcinogenic to humans” based on limited evidence in humans and 
sufficient evidence in animals. 

The National Toxicology Program considers tetrachloroethylene to be “reasonably 
anticipated to be a human carcinogen.” 
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5 TETRACHLOROETHYLENE 

1. PUBLIC HEALTH STATEMENT 

See Chapters 2 and 3 for more information on the health effects from exposure to tetrachloroethylene. 

Children and Tetrachloroethylene 

Overview 
This section discusses potential health effects of tetrachloroethylene exposure in humans from when 
they’re first conceived to 18 years of age, and how you might protect against such effects. 

Exposure It is not known whether children are more susceptible than adults to the effects of 
effects for tetrachloroethylene.  There are very few studies available to answer this question, 
children and many more studies are needed. 

What about 
birth defects? 

We do not know for sure whether tetrachloroethylene can cause birth defects in 
humans.  A few studies in humans have suggested that exposure to 
tetrachloroethylene increased the numbers of babies with heart, oral cleft, or neural 
tube defects, but these studies were not large enough to clearly answer the question.  
Studies in animals exposed by inhalation or stomach tube have not shown clear 
evidence of specific birth defects. 

How Can Families Reduce the Risk of Exposure to 
Tetrachloroethylene 

If your doctor finds that you have been exposed to significant amounts of tetrachloroethylene, ask 
whether your children might also be exposed.  Your doctor might need to ask your state health department 
to investigate. 

Food Tetrachloroethylene has the potential to contaminate foods, although the levels found 
in food are generally low.  

Drinking water Contact local drinking water authorities and follow their advice if you have any 
concerns about the presence of tetrachloroethylene in your tap water. 

Air Tetrachloroethylene can be present in the indoor air of homes and apartments above 
dry cleaning facilities.  To minimize risks associated with breathing in contaminated 
vapors, ensure that the area is well ventilated. 
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6 TETRACHLOROETHYLENE 

1.  PUBLIC HEALTH STATEMENT 

Contaminated 
groundwater or 
soil 

Check product 
labels for 
tetrachloro
ethylene 

Tetrachloroethylene can also be present in groundwater and soil underneath a 
building or a home, resulting in above-ground vapors through vapor intrusion 
(movement of vapors from groundwater or soil into air).  If you think that you may 
have groundwater contaminated with tetrachloroethylene, contact your local state 
health department.  In addition, a depressurization system, an increase in the air 
exchange rate between indoor and outdoor air, or vapor barriers can reduce exposure 
to tetrachloroethylene from vapor intrusion. Prevent children from playing in dirt or 
eating dirt if you live near a waste site that has tetrachloroethylene. 

Tetrachloroethylene is widely used as a scouring solvent that removes oils from 
fabrics, as a carrier solvent, as a fabric finish or water repellant, and as a metal 
degreaser/cleaner. Follow instructions on product labels to minimize exposure to 
tetrachloroethylene. Storing these items in a shed or an outside location may reduce 
exposure and decrease the impact on indoor air. 

Medical Tests to Determine Tetrachloroethylene Exposure 

Overview 
We identify medical tests that can detect whether tetrachloroethylene is in your body, and we recommend 
safe toxic-substance practices. 

Tetrachloro
ethylene can be 
measured in 
blood and urine 

Tetrachloroethylene and its breakdown products (metabolites) can be measured in 
blood and urine.  However, the detection of tetrachloroethylene or its metabolites 
cannot predict the kind of health effects that might develop from that exposure.  
Because tetrachloroethylene and its metabolites leave the body fairly rapidly, the 
tests need to be conducted within days after exposure. 

For more information on the different substances formed by tetrachloroethylene 
breakdown and on tests to detect these substances in the body, see Chapters 3 and 7. 

Federal Government Recommendations to Protect Human 
Health 

Overview 
One way the federal government promotes public health is by regulating toxic substances or 
recommending ways to handle or to avoid toxic substances. 

The federal Regulations are enforceable by law.  The U.S. EPA, the Occupational Safety and 
government Health Administration (OSHA), and the Food and Drug Administration (FDA) are 
regulates toxic some federal agencies that have adopted toxic substances regulations. 
substances 
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7 TETRACHLOROETHYLENE 

1.  PUBLIC HEALTH STATEMENT 

The federal The Agency for Toxic Substances and Disease Registry (ATSDR) and the National 
government Institute for Occupational Safety and Health (NIOSH) have made recommendations 
recommends about toxic substances.  Unlike enforceable regulations, these recommendations are 
safe toxic advisory only. 
substance 
practices 

Toxic substance 
regulations 

Regulations and recommendations can be expressed as “not-to-exceed” levels; that 
is, levels of a toxic substance in air, water, soil, or food that do not exceed a critical 
value usually based on levels that affect animals; levels are then adjusted to help 
protect humans.  Sometimes these not-to-exceed levels differ among federal 
organizations.  Different organizations use different exposure times (an 8-hour 
workday or a 24-hour day), different animal studies, or emphasize some factors over 
others, depending on their mission. 

Recommendations and regulations are also updated periodically as more information 
becomes available.  For the most current information, check with the federal agency 
or organization that issued the regulation or recommendation. 

Some regulations and recommendations for tetrachloroethylene include: 

Federal Organization Regulation or Recommendation 
U.S. Environmental Protection Agency 
(U.S. EPA) 

EPA set a maximum contaminant level 
(MCL) of 0.005 milligrams per liter 
(mg/L; 5 ppb) as a national primary 
drinking standard for 
tetrachloroethylene and noted liver 
problems and increased risk of cancer 
as potential health effects from long-
term exposure above the MCL. 

Occupational Safety and Health OSHA has set an 8-hour time-weighted 
Administration (OSHA) average permissible exposure limit of 

100 ppm, an acceptable ceiling 
exposure limit of 200 ppm, and a 
maximum peak of 300 ppm (not to be 
exceeded for more than 5 minutes of 
any 3-hour period). 

National Institute for Occupational NIOSH recommends that workplace 
Safety and Health (NIOSH) exposure to tetrachloroethylene be 

minimized due to concerns about its 
carcinogenicity. 
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8 TETRACHLOROETHYLENE 

1.  PUBLIC HEALTH STATEMENT 

Additional Information 

Overview 
Where to find more information about tetrachloroethylene: 

Who to contact	 If you have any more questions or concerns, please contact your community or state 
health or environmental quality department, or contact ATSDR at the address and 
phone number below. 

Additional ATSDR can provide publically available information regarding medical specialists 
information with expertise and experience recognizing, evaluating, treating, and managing 
from ATSDR patients exposed to hazardous substances. 

Where to 
obtain 

Toxicological profiles are also available online at www.atsdr.cdc.gov. For more 
information: 

toxicological 
profile copies • Call the toll-free information and technical assistance number at 

1-800-CDCINFO (1-800-232-4636) or 
• Write to: 

Agency for Toxic Substances and Disease Registry 
Division of Toxicology and Human Health Sciences 
1600 Clifton Road NE 
Mailstop F-57 
Atlanta, GA 30333 

For-profit organizations should request final toxicological profile copies from: 

National Technical Information Service (NTIS)  
5285 Port Royal Road  
Springfield, VA 22161  
Phone: 1-800-553-6847 or 1-703-605-6000  
Web site:  http://www.ntis.gov/  
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9 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

2.1  	 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO TETRACHLORO-
ETHYLENE IN THE UNITED STATES 

The use of tetrachloroethylene as a dry cleaning agent, chemical intermediate, and metal degreasing agent 

has led to its release to the environment.  It has also been shown to be produced naturally by several 

temperate and subtropical marine macroalgae, but the majority of exposure to tetrachloroethylene is still 

through anthropogenic sources.  It is primarily released to the air where it is slow to degrade, with 

estimated atmospheric half-lives of approximately 100 days.  Data compiled from the EPA Air Quality 

System indicate that the ambient atmospheric level of tetrachloroethylene is typically <1 µg/m3 . Due to 

its long atmospheric half-life, it is subject to long-range transport and has been identified in atmospheric 

samples in remote locations such as Antarctica where no local sources of this substance exist. Levels for 

tetrachloroethylene in the indoor air tend to be higher.  The median value for indoor air in the United 

States, from 2,195 entries in the EPA’s database of volatile organic contaminants (VOC-AMBI), was 

approximately 4.9 µg/m3, with an average value of 20.7 µg/m3 . 

Tetrachloroethylene is a volatile liquid. When tetrachloroethylene is released to surface water or surface 

soil, it tends to volatilize quickly; however, tetrachloroethylene is also mobile in soil and has the potential 

to leach below the soil surface and contaminate groundwater and the air space between soil particles. 

Tetrachloroethylene can also biodegrade to trichloroethylene, dichloroethylene, vinyl chloride, and ethene 

through reductive dechlorination.  Members of the population can also be exposed to the degradation 

product, trichloroethylene, which is often found as a contaminant in products with tetrachloroethylene.  

More information on trichloroethylene can be found in ATSDR’s Toxicological Profile for 

Trichloroethylene. 

Tetrachloroethylene was identified in approximately 4% of 3,498 aquifer samples at a median 

concentration of 0.090 μg/L in a U.S. Geological Survey (USGS) study.  Tetrachloroethylene was among 

the 15 most frequently detected volatile organic compounds (VOCs).  Sampling between 1985 and 1992 

at a heavily contaminated site at Camp Lejeune, North Carolina, revealed tetrachloroethylene levels as 

high as 30,000 mg/L in water samples taken from hydrocone penetration sites, levels as much as 

1,580 mg/L in water supply well samples, and levels >200 μg/L in tap water samples.  
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10 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

Tetrachloroethylene has been measured in some foods; however, these levels are generally low. Higher 

levels of tetrachloroethylene have been detected in foods that were in shops directly above dry cleaning 

facilities. 

The most important routes of exposure to tetrachloroethylene for the general population appear to be 

inhalation of the compound in the outdoor (ambient) and indoor air and ingestion of drinking water.  

People working in the dry cleaning industries or using metal degreasing products may be exposed to 

elevated levels of tetrachloroethylene.  In addition, people residing near contaminated sites or dry 

cleaning locations may also be exposed to higher levels than the general population.  Exposure to 

tetrachloroethylene and other VOCs can also occur via soil vapor intrusion, which is of particular concern 

indoors).  In addition, exposure can occur from background sources, or indoor sources other than vapor 

intrusion.  Background indoor sources can include consumer products, building materials, combustion 

processes, dry-cleaned clothing or draperies, municipal tap water, or occupant activities. 

Tetrachloroethylene is one of the most commonly detected chemicals in background indoor sources.  

Blood concentrations of tetrachloroethylene ranged from below the limit of detection up to 0.14 ng/mL in 

a random sampling of 1,317 participants in the 2003–2004 U.S. National Health and Nutrition 

Examination Survey (NHANES). 

2.2  SUMMARY OF HEALTH EFFECTS 

Available human and animal data indicate that the central nervous system is a primary target for 

tetrachloroethylene toxicity.  Acute overexposure to tetrachloroethylene vapors results in effects that may 

include central nervous system depression, loss of consciousness, and even death, while neurobehavioral 

effects and vision changes are seen with prolonged exposure to concentrations as low as 2–10 ppm.  

Neurobehavioral changes occur at lower concentrations than other effects.  Available animal data also 

identify the kidney, liver, reproductive system, and developing fetus as targets of tetrachloroethylene 

toxicity.  Effects on the liver and kidney are believed to be mediated by metabolites of 

tetrachloroethylene, while the parent compound is considered to be the active neurotoxicant.  Liver 

effects, including tumors, in mice may be induced primarily by oxidative metabolites, which are produced 

in larger quantities by mice than are produced in humans or rats.  There is suggestive evidence for subtle 

perturbations of the immune system in animals exposed to tetrachloroethylene, but the data are limited 

and the relevance to humans is uncertain at present; further research is needed. Tetrachloroethylene has 

been shown to cause respiratory, ocular, and dermal irritation, as well as reduced body weight gain.  
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11 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

Increased incidences of tumors in the kidney, liver, and lymphoid tissues have been reported in chronic 

bioassays of rats and mice exposed to tetrachloroethylene via inhalation and oral exposure routes.  

Available human data provide suggestive, but weak evidence for tetrachloroethylene-induced non-

Hodgkin’s lymphoma, multiple myeloma, and bladder cancer in humans. 

The neurological symptoms of acute inhalation exposure to high levels of tetrachloroethylene are well 

documented in humans exposed accidentally and include headache, dizziness, drowsiness, ataxia, and 

mood changes; at higher levels, coma and seizures have occurred.  Controlled human exposure studies 

using lower concentrations of tetrachloroethylene (50–100 ppm) for a few hours per day up to 5 days 

have also shown alterations in visual-evoked potentials and electroencephalograms (EEGs), as well as 

deficits in neurobehavioral tests for vigilance and eye-hand coordination. 

Neurobehavioral effects have also been observed with prolonged occupational exposure to 

tetrachloroethylene.  Deficits in behavioral tests that measured short-term memory for visual designs, 

reaction times, perceptual function, attention, and intellectual function were observed in dry cleaning 

workers exposed to concentrations between 8 and 15 ppm.  In addition, loss of color vision (primarily in 

the blue-yellow range) has been reported in dry cleaning workers exposed to tetrachloroethylene at an 

average of 7.3 ppm for 2 years; this finding was supported by another study that did not quantify 

tetrachloroethylene exposure levels.  A chronic inhalation Minimal Risk Level (MRL) of 0.006 ppm has 

been derived based on the lowest-observed-adverse-effect level (LOAEL) of 1.7 ppm identified in a study 

and supported by a follow-up study.  This study was also used as the basis for the chronic oral MRL of 

0.008 mg/kg/day, which was derived by route-to-route extrapolation using physiologically based 

pharmacokinetic (PBPK) modeling.  In addition, the chronic-duration inhalation and chronic-duration oral 

MRLs were adopted as the acute- and intermediate-duration MRLs.  

Several studies have been conducted examining neurological or visual function in small numbers of 

residents of buildings that also housed dry cleaning facilities.  One of these studies observed increased 

reaction times and increased numbers of incorrectly-identified visual stimuli in exposed subjects 

compared with controls.  Two other studies reported decreases in visual contrast sensitivity at low 

concentrations of tetrachloroethylene (0.05–0.3 ppm); however, these studies were potentially limited by 

selection bias and by deficiencies in the testing methods.  Further studies of larger numbers of 

residentially-exposed persons are needed to confirm this finding. 
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12 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

Neurological effects of tetrachloroethylene exposure in laboratory rodents are qualitatively similar to 

those seen in human studies.  Mice and rats have exhibited anesthetic effects after acute exposure to high 

concentrations (1,750 to 2,000 ppm), while acute- and intermediate-duration exposures to lower 

concentrations (200–1,000 ppm have resulted in effects on visual-evoked potentials, EEG patterns, and 

neurobehavioral tests in laboratory rodents.  Alterations in brain chemistry were noted in rats and gerbils 

exposed to concentrations from 60 to 320 ppm.  Neurological effects in animals exposed orally are similar 

to those seen after inhalation exposure, and have occurred at doses as low as 5 mg/kg/day. 

The epidemiological database examining cancer end points in exposed humans is substantial, including 

more than 30 cohort or case-control studies, primarily in occupational settings.  Upon critical review of 

the available epidemiological data regarding the possible carcinogenicity of tetrachloroethylene, the 

National Research Council (NRC) concluded that there was suggestive evidence for an association 

between tetrachloroethylene exposure and lymphoma, despite weak and sometimes inconsistent data. The 

NRC concluded that there was limited but insufficient evidence from epidemiological studies for an 

association with other cancer types including liver, kidney, esophageal, cervical, lung, and bladder cancer. 

After the NRC review, the EPA considered 27 additional epidemiological studies; these studies, with the 

data also reviewed by the NRC, formed the basis for the EPA conclusion that the epidemiological data 

supported a pattern of association between tetrachloroethylene exposure and bladder cancer, multiple 

myeloma, and non-Hodgkin’s lymphoma. 

Animal studies have shown increases in liver cancer in mice exposed via inhalation and gavage, and 

mononuclear cell leukemia and kidney cancer in rats exposed via inhalation. 

The U.S. EPA concluded that tetrachloroethylene is likely to be carcinogenic in humans by all routes of 

exposure based on sufficient evidence in animals and suggestive evidence of a causal association between 

tetrachloroethylene exposure in humans and bladder cancer, multiple myeloma, and non-Hodgkin’s 

lymphoma.  The National Toxicology Program (NTP) concluded that tetrachloroethylene is reasonably 

anticipated to be a human carcinogen based on sufficient evidence in experimental animals.  Based on 

increased risks of esophageal cancer, cervical cancer, and non-Hodgkin's lymphoma in several 

epidemiologic studies, and increased liver tumors in mice, increased mononuclear cell leukemia in rats, 

and renal tumors in male rats, the International Agency for Research on Cancer classified 

tetrachloroethylene as probably carcinogenic to humans (Group 2A). 
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13 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

Tetrachloroethylene has been shown to cause hepatotoxic effects in humans following inhalation 

exposure and in animals exposed by the inhalation and oral routes.  Mice are much more sensitive to the 

hepatic effects of tetrachloroethylene than rats or humans because of their higher rate of oxidative 

metabolism of tetrachloroethylene to trichloroacetic acid; trichloroacetic acid, and to a lesser extent 

dichloroacetic acid, is believed to be the primary hepatotoxic metabolite of tetrachloroethylene. 

Reversible kidney damage has been reported in humans accidentally exposed to acutely toxic amounts of 

tetrachloroethylene vapors. In addition, one study observed a significantly increased incidence of 

hypertensive end-stage renal disease among dry cleaning workers exposed to tetrachloroethylene. Studies 

of tetrachloroethylene exposure in animals have demonstrated renal effects in both rats and mice. Rats 

are more sensitive to the renal effects of tetrachloroethylene than mice; available data suggest that the rate 

of formation of reactive metabolites in the kidneys is higher in rats than mice or humans. 

Few human data pertaining to immune system effects of tetrachloroethylene are available, and the studies 

conducted to date do not provide a clear picture of potential immunotoxic effects.  Recent animal studies 

observed enhancement of antigen-stimulated allergic responses in rats and mice, and enhanced 

inflammation in rats, after exposure to very low oral doses of tetrachloroethylene (from 0.0009 to 

0.09 mg/kg/day); however, the effects are of uncertain toxicological and human health relevance, as the 

degree of change that should be considered adverse is unclear.  Additional study of the potential 

immunotoxicity of tetrachloroethylene is needed; this area represents a significant data gap. 

The available epidemiological data on reproductive and developmental effects of exposure to 

tetrachloroethylene in occupational settings or in contaminated drinking water suffer from a number of 

limitations (including lack of measured exposure levels, coexposure to other solvents, lack of control for 

potential confounders, and small numbers of subjects) and do not provide sufficient bases to draw 

conclusions. Some studies have suggested that they may have an increased risk of adverse reproductive 

effects, primarily menstrual disorders and spontaneous abortions in women exposed occupationally.  

Other studies investigating the populations exposed via drinking water contamination have suggested that 

there may be an association between birth defects (especially oral cleft and neural tube defects) or growth 

retardation and tetrachloroethylene contamination. 

In animals, increased pre- and post-implantation losses, decreased litter sizes, and decreased survival 

during lactation have been reported in rats and rabbits, but not in mice exposed during gestation to 

concentrations between 300 and 1,254 ppm.  Decreased fetal and maternal weight and delayed skeletal 

development were observed in rats and mice exposed to concentrations of 300–664 ppm during gestation. 
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14 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

Gestational exposure to 900 ppm tetrachloroethylene was associated with behavioral and neurochemical 

alterations in some rat offspring.  A gavage study in rats reported that tetrachloroethylene caused an 

increase in micro/anophthalmia in the offspring of rats treated by gavage with tetrachloroethylene at 

900 mg/kg/day on gestation days 6–13.  Following oral exposure of mice to 5 mg tetrachloroethylene/kg 

for 7 days beginning at 10 days of age, hyperactivity was observed at 60 days of age, but not at 17 days of 

age.  Reduced in vitro fertilization was seen in the oocytes of rats exposed to 1,700 ppm for 2 weeks, and 

spermhead abnormalities were observed in mice exposed to 500 ppm for up to 10 weeks, suggesting 

possible effects on gametes. 

2.3  MINIMAL RISK LEVELS (MRLs) 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been made for 

tetrachloroethylene. An MRL is defined as an estimate of daily human exposure to a substance that is 

likely to be without an appreciable risk of adverse effects (noncarcinogenic) over a specified duration of 

exposure. MRLs are derived when reliable and sufficient data exist to identify the target organ(s) of 

effect or the most sensitive health effect(s) for a specific duration within a given route of exposure. 

MRLs are based on noncancerous health effects only and do not consider carcinogenic effects. MRLs can 

be derived for acute, intermediate, and chronic duration exposures for inhalation and oral routes.  

Appropriate methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis.  As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs will be revised. 

Inhalation MRLs 

•	 An MRL of 0.006 ppm has been derived for acute-duration inhalation exposure (14 days or less) 
to tetrachloroethylene. 

Data available for acute-duration inhalation MRL derivation include three controlled human exposure 

studies and several animal studies. The lowest effect levels were identified in the human exposure studies 
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15 TETRACHLOROETHYLENE 

2. RELEVANCE TO PUBLIC HEALTH 

by Altmann et al. (1990, 1992).  In the study by Altmann et al. (1992), male volunteers were exposed to 

tetrachloroethylene at 10 or 50 ppm, 4 hours/day for 4 days.  Corresponding equivalent continuous 

exposure concentrations are 2 and 10 ppm. At 50 ppm, pattern reversal visual-evoked potential latencies 

increased (p<0.05) and significant performance deficits for vigilance (p=0.04) and eye-hand coordination 

(p=0.05) were observed.  No effects on brainstem auditory-evoked potential were noted at either 

concentration.  Because faint odor was reported by 33% of the subjects at 10 ppm and 29% of the subjects 

at 50 ppm on the first day of testing, and by 15% of the subjects at 10 ppm and 36% of the subjects at 

50 ppm on the last day of testing, the investigators concluded that only a few subjects could identify their 

exposure condition.  In a similar study by Altmann et al. (1990), significant (p<0.05) increased latencies 

for pattern reversal visual-evoked potentials were observed in 10 male volunteers exposed to tetrachloro-

ethylene at 50 ppm, compared to 12 men exposed at 10 ppm.  Exposures in this study were also 

4 hours/day for 4 days, resulting in equivalent continuous exposure concentrations of 2 and 10 ppm.  

Effects on brainstem auditory-evoked potentials were not observed in the Altmann et al. (1990) study.  

Tetrachloroethylene in the blood increased with exposure duration, and linear regression to associate 

blood tetrachloroethylene with pattern reversal visual-evoked potential latencies was significant (r=-0.45, 

p<0.03).  Additional tests of neurological function were not conducted in this study. These two studies 

identified a no-observed-adverse-effect level (NOAEL) of 2 ppm (equivalent continuous exposure 

concentration). 

Hake and Stewart (1977) did not find any changes in flash-evoked potentials or equilibrium tests in four 

male subjects exposed to increasing concentrations of tetrachloroethylene 7.5 hours/day for 5 days. The 

subjects were sequentially exposed to 0, 20, 100, and 150 ppm (each concentration 1 week).  

Corresponding equivalent continuous exposure concentrations are 6.25, 31, and 47 ppm. Subjective 

evaluation of EEG scores suggested cortical depression in subjects exposed at 100 ppm.  Decreases in the 

Flanagan coordination test were observed at ≥100 ppm. 

Animal studies of acute-duration exposure to tetrachloroethylene have demonstrated neurological effects, 

but at higher concentrations than the human study by Altmann et al. (1990) (>16 ppm continuous 

equivalent concentration; Boyes et al. 2009; DeCeurriz et al. 1983; Mattsson et al. 1998; NTP 1986; 

Oshiro et al. 2008; Savolainen et al. 1977).  PBPK modeling simulations suggest equivalent 

tetrachloroethylene blood areas under the curve (AUCs) for rats and humans exposed to the same inhaled 

concentrations (Chiu and Ginsberg 2011), indicating that the human-equivalent concentrations for these 

studies are also ≥16 ppm and higher than the human effect levels identified by Altmann et al. (1990, 
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16 TETRACHLOROETHYLENE 
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1992).  Thus, animal studies were not considered to be suitable options for acute-duration MRL 

derivation. 

An acute-duration inhalation MRL could be obtained using the controlled human exposure study by 

Altmann et al. (1990, 1992).  This study identified a NOAEL of 2 ppm (equivalent continuous exposure 

concentration) for neurobehavioral changes. This value is very close to the LOAEL of 1.7 ppm for color 

vision decrements in the chronic-duration epidemiological study by Cavalleri et al. (1994).  Given that the 

NOAEL was from a study in which exposures were for only 4 hours/day for 4 days, it is uncertain 

whether this value would be adequately protective for longer exposures (up to 14 days).  In male 

volunteers exposed to 1 ppm tetrachloroethylene for 6 hours, venous blood concentrations continued to 

increase between 4 and 6 hours (Chiu et al. 2007); likewise, when venous blood was sampled before each 

of four daily 4-hour exposures to tetrachloroethylene at 10 or 50 ppm, concentrations continued to 

increase each day from 36 μg/L before the second exposure to 10 ppm up to 56 μg/L 1 day after the fourth 

daily exposure (Altmann et al. 1990).  These data suggest that continuous or repeated exposures over 

durations >4 days may yield higher blood levels than seen after four daily 4-hour exposures, and that the 

NOAEL of 2 ppm observed in the study by Altmann et al. (1990) may not be adequately protective for 

exposures up to 2 weeks. Because it is very close to the NOAEL from acute-duration exposure, the 

chronic-duration LOAEL of 1.7 ppm (continuous equivalent exposure concentration) from Cavalleri et al. 

(1994) represents a better basis for acute and intermediate-duration MRLs. A physiologically-based 

pharmacokinetic (PBPK) model (Chiu and Ginsberg 2011) was used to evaluate the effect of exposure 

duration on the arterial blood concentration of tetrachloroethylene and the area under the curve (AUC) of 

the blood concentration-time curve at a continuous exposure of 1.7 ppm.  This simulation showed that 

arterial blood concentrations and 24-hour AUC blood concentration-time values are very similar after 

14 days, 90 days, 365 days, and 2 years of exposure.  These results predict that the blood AUC of 

tetrachloroethylene is nearly constant after 2 weeks of continuous exposure.  The blood concentration 

reaches approximately 90% of steady-state at about 2 weeks of continuous exposure and 99% of steady 

state at 90 days. Given that the blood concentration of tetrachloroethylene after acute-duration exposure 

is very similar to that after chronic exposure to the same concentration, the chronic-duration inhalation 

MRL was adopted as the acute-duration inhalation MRL. 

•	 An MRL of 0.006 ppm has been derived for intermediate-duration inhalation exposure (15– 
365 days) to tetrachloroethylene. 

Epidemiological data in humans and studies in animals have identified the central nervous system as the 

system most affected at the lowest inhalation exposures.  There are no intermediate-duration human 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

   
 
 

 
 
 
 

  

    

     

       

   

    

     

   

    

    

   

   

   

    

    

    

  

 

     
 

 

  

  

   

   

     

    

    

    

     

 

    

  

       

   

   

17 TETRACHLOROETHYLENE 
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epidemiology studies. Available intermediate-duration studies that examined or observed neurological or 

neurobehavioral effects in animals (e.g., Karlsson et al. 1987; Kyrklund et al. 1988, 1990; Mattsson et al. 

1992,1998; Rosengren et al. 1986; Tinston 1995; Wang et al. 1993) identified effect levels much higher 

than the acute-duration human studies (Altmann et al. 1990, 1992; Hake and Stewart,1977). In addition, 

the available data suggest that low effect levels in humans from acute-duration exposure are similar to 

those for the chronic-duration LOAEL of 1.7 ppm (continuous equivalent exposure concentration) from 

Cavalleri et al. (1994), suggesting that the same MRL is likely applicable to all exposure durations. A 

PBPK model (Chiu and Ginsberg 2011) was used to evaluate the effect of exposure duration on the 

arterial blood concentration of tetrachloroethylene and the AUC of the blood concentration-time curve at 

a continuous exposure of 1.7 ppm.  This simulation showed that arterial blood concentrations and 24-hour 

AUC blood concentration-time values are very similar after 14 days, 90 days, 365 days, and 2 years of 

exposure.  These results indicate that the blood concentration of tetrachloroethylene reaches steady-state 

at about 2 weeks of continuous exposure, and that longer exposure durations will not yield higher blood 

concentrations.  Given that the blood concentration of tetrachloroethylene after acute-duration exposure is 

very similar to that after chronic exposure to the same concentration, the chronic-duration inhalation 

MRL was adopted as the intermediate-duration inhalation MRL. 

•	 An MRL of 0.006 ppm has been derived for chronic-duration inhalation exposure (≥1 year) to 
tetrachloroethylene. 

This MRL was derived from a study by Cavalleri et al. (1994) with support from a follow-up study by 

Gobba et al. (1998).  Cavalleri et al. (1994) evaluated color vision in 35 tetrachloroethylene-exposed 

workers (22 dry-cleaners and 13 ironers). Color vision was evaluated by the Lanthany 15 Hue 

desaturated panel (D-15d) test, which is designed for early detection of acquired dyschromatopsia, and 

results were expressed as Color Confusion Index (CCI). Mean CCI scores were 1.192 ± 0.133 in dry 

cleaners compared with 1.089 ±0.117 in controls (p=0.007).  Reexamination of the workers 2 years later 

showed that those workers whose exposure to tetrachloroethylene had increased experienced further 

decrements in color vision, while those whose exposure had decreased experienced no changes in color 

vision (Gobba et al. 1998). A LOAEL of 7.3 ppm was identified for this study. 

The nervous system is a well-established target of tetrachloroethylene exposure in humans and animals, 

and effects on this system occur at lower concentrations than effects in other target organs such as the 

liver or kidney. A substantial number of studies evaluated the effects of inhaled tetrachloroethylene in 

occupationally exposed individuals, particularly those engaged in dry cleaning activities. More recent 

studies (Schreiber et al. 2002; Storm et al. 2011) have also provided suggestive evidence of changes in 
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18 TETRACHLOROETHYLENE 
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visual contrast sensitivity at low concentrations (one-half to one-thirtieth of the continuous-equivalent 

concentration used to derive the MRL), in residential populations living in buildings that also housed dry 

cleaning facilities or in buildings in close proximity to such facilities. These studies were not selected for 

use due to limitations including small sample size and study design problems (lack of blinding of 

investigators, differences between exposed and referent groups that could confound the comparison) that 

weaken the conclusions that can be drawn from them.  The human epidemiological studies in 

occupationally-exposed populations (especially Cavalleri et al. 1994; Echeverria et al. 1995;Gobba et al. 

1998), combined with a small number of human controlled exposure experiments (Altmann et al. 1990; 

Hake and Stewart 1977), have identified central nervous system effects after acute and chronic-duration 

exposures to low-level exposures to tetrachloroethylene. 

Neurological effects of tetrachloroethylene exposure in laboratory rodents are qualitatively similar to 

those seen in human studies.  Mice and rats have exhibited anesthetic effects after acute exposure to high 

concentrations (Friberg et al. 1953; Goldberg et al. 1964; NTP 1986; Rowe et al. 1952), while lower 

concentrations have resulted in effects on visual-evoked potentials (Albee et al. 1991; Boyes et al. 2009; 

Mattsson et al. 1998), EEG patterns (Albee et al. 1991), neurobehavioral tests (Oshiro et al. 2008; 

Savolainen et al. 1977), and brain chemistry (Karlsson et al. 1987; Kyrklund et al. 1988; Rosengren et al. 

1986; Wang et al. 1993) in laboratory rodents or gerbils. 

The LOAEL of 7.3 ppm from Cavalleri et al. (1994) was converted to an equivalent continuous exposure 

concentration of 1.7 ppm (7.3 ppm x 8/24 hours x 5/7 days).  Using the LOAEL of 1.7 ppm, a chronic-

duration inhalation MRL of 0.006 ppm is obtained after application of an uncertainty factor of 100 (10 for 

human variability and 10 for use of a LOAEL), and a modifying factor of 3 for database deficiencies (for 

inadequate information on potential low-dose immune system effects). 

Oral MRLs 

•	 An MRL of 0.008 mg/kg/day has been derived for acute-duration oral exposure (14 days or less) 
to tetrachloroethylene. 

There is abundant evidence for neurological and neurobehavioral effects after chronic, low-level 

exposures to tetrachloroethylene.  While this evidence is primarily available from studies of inhalation 

exposure, effects after oral exposure are expected to be similar based on the available oral data and 

pharmacokinetic studies suggesting similar blood levels of parent compound after inhalation and oral 

exposure of humans to tetrachloroethylene (see for example, the PBPK model by Chiu and Ginsberg 
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19 TETRACHLOROETHYLENE 
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[2011]).  Among human and animal studies identifying neurological or neurobehavioral effects after 

acute-duration oral exposure, the lowest effect level was identified by Fredriksson et al. (1993).  Other 

acute-duration studies using rats and evaluating neurological responses used doses at least 10-fold higher.  

Fredriksson et al. (1993) identified a LOAEL of 5 mg/kg/day for hyperactivity in male NMRI mice 

exposed via gavage for 7 days beginning on postnatal day 10 (Fredriksson et al. 1993).  Significant 

pharmacokinetic differences between mice and humans lead to markedly different blood levels of parent 

compound after oral exposure to tetrachloroethylene; thus, mice are not a good model for neurological 

effects of tetrachloroethylene exposure in humans. Furthermore, this LOAEL is similar to the LOAEL 

for chronic human exposure (2.3 mg/kg/day) obtained by route-to-route extrapolation from the inhalation 

study (Cavalleri et al. 1994) used to derive the chronic inhalation and oral MRLs. Inhalation studies (e.g., 

Altmann et al. 1990, 1992; Cavalleri et al. 1994) have shown that neurobehavioral effects occur at similar 

exposure levels after acute- and chronic-duration exposure.  Given the lack of suitable acute-duration oral 

data, and based on the expectation that acute-duration effect levels in humans would be similar to 

chronic-duration effect levels, the acute-duration oral MRL was set equal to the chronic oral MRL. 

•	 An MRL of 0.008 mg/kg/day has been derived for intermediate-duration oral exposure (15– 
365 days) to tetrachloroethylene. 

There is abundant evidence for neurological and neurobehavioral effects at low exposures to 

tetrachloroethylene.  While this evidence is primarily available from studies of inhalation exposure, 

effects after oral exposure are expected to be similar based on the available oral data and pharmacokinetic 

studies suggesting similar blood levels of parent compound after inhalation and oral exposure of humans 

to tetrachloroethylene (see for example, the PBPK model by Chiu and Ginsberg [2011]).  Among human 

and animal studies of intermediate-duration oral exposure, only Chen et al. (2002) examined sensitive 

neurological or neurobehavioral effects.  The 8-week study by Chen et al. (2002) identified a LOAEL of 

3.6 mg/kg/day (adjusted to equivalent continuous dose from administered dose of 5 mg/kg/day, 

5 days/week) for impaired nociception (increased latency to tail withdrawal from hot water and increased 

response latency to hot plate tests) and increased threshold for pentylenetetrazol-induced seizure 

initiation.  PBPK modeling results reported by Chiu and Ginsberg (2011) indicate that the area under the 

tetrachloroethylene blood concentration-time curve for humans is about twice that of rats across a wide 

range of continuous oral doses (0.01–1,000 mg/kg/day).  Thus, the human-equivalent LOAEL dose from 

the study by Chen et al. (2002) is 1.8 mg/kg/day.  This LOAEL is very similar to the human oral LOAEL 

of 2.3 mg/kg/day obtained by route-to-route extrapolation from the Cavalleri et al. (1994) chronic 

inhalation study.  Because the human data provide a better basis for MRL derivation than the rat data, the 

chronic-duration oral MRL was applied to all exposure durations. 
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•	 An MRL of 0.008 mg/kg/day has been derived for chronic-duration oral exposure (>1 year) to 
tetrachloroethylene. 

The available human epidemiological studies of oral exposure to tetrachloroethylene do not provide 

sufficient exposure information to identify effect levels, and are thus not suitable for oral MRL derivation. 

The only available chronic-duration oral study of tetrachloroethylene in animals is the NCI (1977) cancer 

bioassay.  In this study, survival was decreased at the lowest dose in both rats and mice; thus, it is also not 

suitable for use in deriving a chronic-duration oral MRL.  There is abundant evidence for neurological 

and neurobehavioral effects after chronic, low exposures to tetrachloroethylene.  While this evidence is 

primarily available from studies of inhalation exposure, effects after oral exposure are expected to be 

similar based on the available oral data and pharmacokinetic studies suggesting similar blood levels of 

parent compound after inhalation and oral exposure of humans to tetrachloroethylene (see for example, 

the PBPK model by Chiu and Ginsberg [2011]).  Given the lack of suitable chronic-duration oral data, 

and the availability of a robust PBPK model for route-to-route extrapolation, the chronic-duration MRL 

was derived based on route-to-route extrapolation from the chronic-duration inhalation MRL.  The 

internal dose metric chosen for route-to-route extrapolation was the 24-hour AUC of the 

tetrachloroethylene blood concentration-time curve. Based on simulations of the Chiu and Ginsberg 

(2011) model, a continuous inhalation exposure to 1.7 ppm yields the same 24-hour AUC as a continuous 

oral dose of 2.3 mg/kg/day.  Using the LOAEL of 2.3 mg/kg/day, a chronic-duration oral MRL of 

0.008 mg/kg/day is obtained after application of an uncertainty factor of 100 (10 for human variability 

and 10 for use of a LOAEL), and a modifying factor of 3 for database deficiencies (for inadequate 

information on potential low-dose immune system effects). 
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3. HEALTH EFFECTS  

3.1  INTRODUCTION 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of 

tetrachloroethylene.  It contains descriptions and evaluations of toxicological studies and epidemiological 

investigations and provides conclusions, where possible, on the relevance of toxicity and toxicokinetic 

data to public health. Significant study limitations are noted in this chapter if:  (1) they help to explain 

disparate findings between studies; (2) only one or a few studies are available on a particular end point, 

meaning that the strength of the study is a relatively more important consideration; or (3) the limitations 

create substantial uncertainty in the conclusions.  

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

3.2  DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE 

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (death, systemic, immunological, neurological, reproductive, 

developmental, genotoxic, and carcinogenic effects). These data are discussed in terms of three exposure 

periods:  acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death).  "Less serious" effects are those that are not expected to cause significant dysfunction or death, 

or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 
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3. HEALTH EFFECTS 

"less serious" and "serious" effects. The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 

the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health.  

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of tetrachloro-

ethylene are indicated in Tables 3-1 and 3-3 and Figures 3-1 and 3-2.  

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

3.2.1 Inhalation Exposure 

3.2.1.1  Death 

At high vapor concentrations, tetrachloroethylene is both a potent anesthetic agent and a cardiac 

epinephrine sensitizer. Sudden death resulting from acute exposure to high vapor concentrations is 

presumed to result from either excessive depression of the respiratory center or the onset of a fatal cardiac 

arrhythmia induced by epinephrine sensitization.  Human deaths caused by tetrachloroethylene inhalation 

have been reported.  While published reports have not included estimates or measurements of exposure 

concentrations in the air, postmortem blood concentrations of tetrachloroethylene in decedents have 

ranged from 44 to 66 mg/L (Dehon et al. 2000; Garnier et al. 1996; Isenschmid et al. 1998; Lukaszewski 

1979).  

A 33-year-old man was found unconscious after performing work on a plugged line in a commercial dry 

cleaning establishment and died on the way to the hospital (Lukaszewski 1979).  Exposure to tetrachloro-

ethylene was presumably by inhalation since an autopsy revealed no tetrachloroethylene in the stomach 
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23 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

contents, but high levels of the compound in the blood and brain (4.4 mg/100 mL and 36 mg/100 g, 

respectively).  In another report, a 53-year-old male dry cleaner died after being overcome by 

tetrachloroethylene fumes (Levine et al. 1981).  Tetrachloroethylene concentrations were 66 mg/L in 

blood, and 79, 31, and 46 mg/kg in the brain, heart, and lungs, respectively, of a 2-year-old boy found 

dead 1.5 hours after he was placed in his room with curtains that had been incorrectly dry cleaned in a 

coin-operated dry cleaning machine (Garnier et al. 1996).  Isenschmid et al. (1998) reported that a 26-year 

old male was found dead after intentional inhalation of a pressurized tire repair product containing 

tetrachloroethylene and chlorodifluoromethane.  Chlorodifluoromethane was not detected in biological 

specimens collected at autopsy; concentrations of tetrachloroethylene, in contrast, were 62 mg/L in blood, 

341 mg/kg in the liver, and 47 mg/kg in the lung (Isenschmid et al. 1998).  A 45-year-old woman was 

found unconscious in a laundry area and was transported to the hospital in a coma, where she was 

observed to exhibit acute respiratory distress syndrome and severe metabolic acidosis (Dehon et al. 2000). 

She died 7 days after the event from cardiovascular instability and acute renal failure.  Autopsy findings 

included cerebral edema with foci of hemorrhagic infarction, diffuse lesions of edematous and 

hemorrhagic alveolitis with some foci of aspiration pneumonia in the lungs, diffuse hepatocytic necrosis, 

and acute renal tubular necrosis.  Tetrachloroethylene was detected in the blood at 1.319 mg/L and in 

urine at 93 μg/g creatinine 2 days after hospital admission.  Tissue levels ranged from 0.751 μg/g in 

muscle to 1.95 μg/g in the liver (Dehon et al. 2000).  In these reports, the level of tetrachloroethylene 

exposure was not reported. 

Retrospective cohort mortality studies of workers occupationally exposed to tetrachloroethylene for 

chronic durations have not suggested increased mortality associated with exposure.  Although total 

mortality was not increased, Blair et al. (1979) found increased mortality from cancers of the lungs, 

cervix, uterus, and skin among dry cleaners. This study is limited by a lack of control for alcohol and 

tobacco consumption.  Other studies have not shown significantly increased mortality in workers (dry 

cleaners or aircraft maintenance workers) occupationally exposed to tetrachloroethylene (Blair et al. 

1990; Brown and Kaplan 1987; Katz and Jowett 1981; Spirtas et al. 1991). These studies did not include 

exposure measurements, but relied on job descriptions, work history as a surrogate for exposure duration, 

and/or estimated exposure concentrations. 

There were no major differences between mice and rats in susceptibility to lethal effects of 

tetrachloroethylene following acute-duration exposure.  In addition, no sex differences in response were 

detected.  A 4-hour inhalation LC50 of 5,200 ppm for female albino mice has been reported (Friberg et al. 

1953); LC50 data in other species are not available.  The highest nonlethal concentrations reported for 
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24 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

4-hour exposure to tetrachloroethylene were 2,000 to 2,450 ppm in mice (Friberg et al. 1953; NTP 1986; 

Rowe et al. 1952) and 2,445 ppm in rats (NTP 1986).  The lowest lethal concentrations reported for 

4-hour exposures were 2,613–3,000 ppm in mice (Friberg et al. 1953; NTP 1986) and 3,786 ppm in rats 

(NTP 1986). A single 10- or 14-hour exposure of rats to 2,000 ppm did not produce death, while death 

occurred with exposure to 3,000 ppm for ≥5 hours (Rowe et al. 1952). In a 14-day study of rats and mice, 

mortality occurred in rats exposed to 1,750 ppm tetrachloroethylene but not in mice (NTP 1986).  

Compound-related mortality did not occur in either species at exposure concentrations of ≤875 ppm. A 

2-week study in F344 rats and Crj:BDF1 mice reported mortality at 3,200 ppm in both species, but not at 

1,600 ppm when administered 6 hours/day, 5 days/week (JISA 1993). 

In an intermediate-duration study, increased mortality occurred in rats and mice exposed to 1,600 ppm 

tetrachloroethylene for 13 weeks, but not in those exposed to concentrations ≤800 ppm (NTP 1986). No 

deaths were reported in a different 13-week study of rats and mice exposed to concentrations up to 

1,400 ppm tetrachloroethylene (JISA 1993). Mortality in rats exposed to 400 ppm tetrachloroethylene 

and mice exposed to 100 or 200 ppm tetrachloroethylene by inhalation in a 103-week carcinogenesis 

bioassay was a result of compound-related lesions and neoplasms (NTP 1986).  This study is discussed in 

Sections 3.2.1.2 and 3.2.1.7. Survival was reduced in another chronic bioassay of rats and mice exposed 

to 600 and 250 ppm tetrachloroethylene for 104 weeks (JISA 1993).  The study authors did not indicate 

whether the decreased survival was attributable to neoplasia. 

All reliable LOAEL and LC50 values for death in each species and duration category are recorded in 

Table 3-1 and plotted in Figure 3-1. 

3.2.1.2  Systemic Effects 

The highest NOAEL and all reliable LOAEL values for systemic effects in each species and duration 

category are recorded in Table 3-1 and plotted in Figure 3-1. 

No studies were located regarding dermal effects in humans or animals after inhalation exposure to 

tetrachloroethylene. 

Respiratory Effects. Data on the respiratory effects of tetrachloroethylene exposure in humans are 

limited to case reports (Carpenter 1937; Patel et al. 1973; Rowe et al. 1952; Tanios et al. 2004) and two 

experimental studies (Rowe et al. 1952; Stewart et al. 1981).  The studies reporting exposure 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Fischer- 344) 
2 wk 
5 d/wk 
6 hr/d 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

3200 (5 M and 7 F died) 

Reference 
Chemical Form 

JISA 1993 

Comments 

2 Rat 
(Fischer- 344) 

2wk 5d/wk 
6hr/d 1750 (5/10 rats died) NTP 1986 

3 Rat 
(Fischer- 344) 

4 hr 3786 (5/10 rats died) NTP 1986 

4 Rat 
(albino) 

4 hours 2000 F 4000 F (increased mortality) Union Carbide 1962 

5 Mouse 
(NS) 

4 hr 5200 F (LC50) Friberg et al. 1953 

6 Mouse 
(Hybrid) 

2 wk 
5 d/wk 
6 hr/d 

3200 (9 M and 7 F died) JISA 1993 

7 Mouse 
(B6C3F1) 

Systemic 
8 Human 

4 hr 

3 hr Cardio 87 M 

2613 F (2/5 died) NTP 1986 

Ogata et al. 1971 
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077

106 216

930

106

930

161

150

150

150

150

150

519

65

249

255

875

1750

146

400

400

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

9 Human	 0.05-2 hr 

10 Human	 5d 7.5hr/d 

11 Rat	 Gd 6-19 
7 d/wk(CD) 
6 hr/d 

12 Rat	 2wk 5d/wk 
6hr/d(Fischer- 344) 

13	 Rat 14d 6hr/d 
(Fischer- 344) 

System 

Resp 

Ocular 

Resp 

Cardio 

Hemato 

Hepatic 

Renal 

Bd Wt 

Bd Wt 

Hepatic 

Renal 

LOAEL 

NOAEL 
(ppm) 

Less Serious 
(ppm) 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

106 216 (irritation) Rowe et al. 1952930 (severe irritation tolerated 
for <2 minutes) 

106 (slight ocular irritation) 930 (severe irritation tolerated 
for <2 minutes) 

150 M Stewart et al. 1981 

150 M 

150 M 

150 M 

150 M 

65 F 249 F (19% decr in maternal 
body weight gain during 
Gd 6-9) 

Carney et al. 2006 

875 M 1750 M (body weight 28% lower 
than controls) 

NTP 1986 

400 (hypertrophy) Odum et al. 1988 

400 
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1000
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1000
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1000
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1000
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation	 (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

14 Rat	 4 hrs/day, 8 
days(Sprague- 

Dawley)  

15 Rat	 7 hrs/day, 8 
days(Sprague- 

Dawley)  

16 Rat	 6 hrs/day, 5 
d/wk; 2 wks(Long- Evans) 
pre-mating-matin 

System 

Hepatic 

Renal 

Bd Wt 

Hepatic 

Renal 

Bd Wt 

Hepatic 

Bd Wt 

LOAEL 

NOAEL 
(ppm) 

Less Serious 
(ppm) 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

1000 M Piper and Sparschu 1969 

1000 M increased kidney weight, 
pale kidneys, minimal to 
moderate hyaline droplet 
formation 

1000 M 

1000 M Piper and Sparschu 1969 

1000 M increased absolute 
kidney weight, pale 
kidneys, minimal to 
moderate hyaline droplet 
formation 

1000 M 

1000 F Tepe et al. 1980 

1000 F 
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172
300

529

800

1600

400

800

049

200

056

425 875

1750

144
400

400

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to Species 
Figure (Strain) 

17 Mouse 
(ddY) 

18 Mouse 
(Hybrid) 

19 

20 

Mouse 
(NS) 

Mouse 
(B6C3F1) 

21 Mouse 
(B6C3F1) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

5d 6hr/d Resp 300 M (epithelial degeneration 
of olfactory mucosa, 
dilation of Bowman's 
glands, atrophy of 
olfactory nerves) 

Aoki et al. 1994 

2 wk 
5 d/wk 
6 hr/d 

Hepatic 

Renal 

800 

400 

1600 

800 

(central enlargement of 
liver) 

(necrosis and 
regeneration of proximal 
tubules) 

JISA 1993 

4 hr Hepatic 200 F (fatty degeneration) Kylin et al. 1963 

2wk 5d/wk 
6hr/d 

14d 6hr/d 

Hepatic 

Bd Wt 

Hepatic 

Renal 

425 

1750 

400 

875 (hepatic vacuolization) 

400 (peroxisomal 
proliferation; fatty 
changes) 

NTP 1986 

Odum et al. 1988 
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535
664

664
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538
1254

302

10

50

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation	 (continued) 

a 
Key to Species 
Figure (Strain) 

22	 Mouse 
(ddy) 

23	 Mouse 
C57BL 

24	 Dog 
(Beagle) 

25	 Rabbit 
(New 
Zealand) 

Neurological 
26 Human 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

5 days; 6 
hrs/day Resp 300 M (erosion of the nasal 

mucosa) 
Suzaki et al. 1997 

Gd 7-15 
8 hr/d Hepatic 664 F (Increased relative liver 

weight) 
Szakmary et al. 1997 

Bd Wt 664 F 

10 min Resp 5000 M 10000 M (upper respiratory tract 
irritation) 

Reinhardt et al. 1973 

Cardio 10000 M 

Gd 7-20 
8 hr/d Bd Wt 1254 F (58% lower body weight 

gain) 
Szakmary et al. 1997 

4d 4hr/d 10 M 50 M (increased latency of 
pattern reversal 
visual-evoked potentials) 

Altmann et al. 1990 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

27 Human 4d 4hr/d 10 M 50 M (increased latency of 
pattern reversal 
visual-evoked potential, 
significant performance 
deficits for vigilance and 
eye-hand coordination) 

Altmann et al. 1992 

28 Human <3 hr 500 1000 (mood/personality 
changes) 

2000 (anesthesia) Carpenter 1937 

29 Human 5 d 7.5hr/d 20 100 (cerebral cortical 
depression) 

Hake and Stewart 1977; 
Stewart et al. 1981 

30 Human 3 hr 87 M Ogata et al. 1971 

31 Human 0.05-2 hr 106 216 (dizziness/sleepiness) 280 (incoordination) Rowe et al. 1952 

32 Human 5d 7hr/d 101 (mood/personality 
changes) 

Stewart et al. 1970 

30
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250

506
800

058

875 1750

509
500

040
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573
2000

596

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

33 

34 

35 

36 

37 

38 

39 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

Rat 
(Long- Evans) 

Once 
1.5 hr 250 M (reduced amplitude of 

visual evoked potentials) 
Boyes et al. 2009 

Rat 
(Fischer- 344) 

4 d 
6 hr/d 800 M (altered flash and 

somatosensory evoked 
potentials and EEG) 

Mattsson et al. 1998 

Rat 
(Fischer- 344) 

2wk 5d/wk 
6hr/d 

Rat 
(Long- Evans) 

once 
1 hr/d 

875 

500 M (impaired sustained 
attention) 

1750 (hypoactivity; ataxia) NTP 1986 

Oshiro et al. 2008 

Rat 
(Sprague-
Dawley) 

4d 6hr/d 200 M (increased open-field 
behavior, i.e., 
ambulation) 

Savolainen et al. 1977 

Rat 
(albino) 

4 hours 2000 F (loss of consciousness 
and anesthesia) 

Union Carbide 1962 

Mouse 
(Swiss-
Webster) 

1 d 
4 hr/d 596 M (prolongation of 

escape-directed 
behavior) 

DeCeaurriz et al. 1983 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) System 

Exposure/ 
Duration/ 

Frequency 
(Route) 

NOAEL 
(ppm) 

LOAEL 

Less Serious 
(ppm) 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

40 Mouse 
(B6C3F1) 

2wk 5d/wk 
6hr/d 875 1750 (anesthesia) NTP 1986 

41 Mouse 
(B6C3F1) 

4 hr 

Reproductive 
42 Rat 

(Sprague-
Dawley) 

2 wk 
2 periods/day 
1 hr/period 
(W) 

2328 (anesthesia) 

1700 F (reduced in vitro 
fertilizability of oocytes 
from treated rats) 

NTP 1986 

Berger and Horner 2003 

43 Rat 
(CD) 

GD 6-19 
7 d/wk 
6 hr/d 

600 F Carney et al. 2006 

44 Rat 
(albino) 

up to 10 weeks 500 M NIOSH 1980 

45 Rat 
(albino) 

GD 6-18 (7 
hrs/day) 500 F NIOSH 1980 

46 Rat 
(Long- Evans) 

6 hrs/day, 5 
d/wk, 2 wks 
pre-mating-matin 

1000 F Tepe et al. 1980 

47 Mouse 
(CD-1) 

up to 10 weeks 100 M 500 M (significant increase in 
spermhead 
abnormalities) 

NIOSH 1980 
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664

594
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587
1254

518

250
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079

100

900

553

500

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation	 (continued) 

a 
Key to Species 
Figure (Strain) 

48	 Mouse 
C57BL 

49	 Rabbit 
(New 
Zealand) 

50	 Rabbit 
(New 
Zealand) 

Developmental 
51 Rat 

(CD) 

52	 Rat 
(Sprague-
Dawley) 

53	 Rat 
(albino) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

Gd 7-15 
8 hr/d 664 F Szakmary et al. 1997 

GD 7-21 (7 
hrs/day) 500 F NIOSH 1980 

Gd 7-20 
8 hr/d 1254 F (4/16 litters totally 

resorbed; increased 
postimplantation loss) 

Szakmary et al. 1997 

GD 6-19 
7 d/wk 
6 hr/d 

250 600 (decr fetal weight and 
incomplete ossification of 
thoracic vertebral centra) 

Carney et al. 2006 

Gd 14-20 7hr/d 100 F 900 F (transient decreased 
performance ascent test; 
decreased brain 
acetylcholinesterase; 
increased open-field 
activity) 

Nelson et al. 1980 

GD 6-18 (7 
hrs/day) 500 NIOSH 1980 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

54 Rat 
(Sprague-
Dawley) 

Gd6-15 7hr/d 300 F (increased fetal 
resorptions) 

Schwetz et al. 1975 

55 Mouse 
(Swiss-
Webster) 

Gd6-15 7hr/d 300 F (decreased fetal weight; 
delayed ossification) 

Schwetz et al. 1975 

56 Mouse 
C57BL 

Gd 7-15 
8 hr/d 664 (increased percentage of 

fetuses with internal 
malformations) 

Szakmary et al. 1997 

57 Rabbit 
(New 
Zealand) 

GD 7-21 (7 
hrs/day) 500 NIOSH 1980 

58 Rabbit 
(New 
Zealand) 

Gd 7-20 
8 hr/d 1254 (4/16 litters totally 

resorbed; increased 
postimplantation loss) 

Szakmary et al. 1997 

INTERMEDIATE EXPOSURE 
Death 
59 Rat 

(Fischer- 344) 
13wk 5d/wk 
6hr/d 1600 (11/20 rats died) NTP 1986 

60 Mouse 
(B6C3F1) 

13wk 5d/wk 
6hr/d 1600 (6/10 mice died) NTP 1986 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 

LOAEL 

Less Serious 
(ppm) 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

Systemic 
61 Rat 

(Sprague-
Dawley) 

6 hrs/day, 5 
days/wk. 4 
weeks 

Hepatic 100 F Boverhof et al. 2012300 F (increased relative liver 
weight) 

Bd Wt 300 F 1000 F (transient decrease in 
body weight) 

62 Rat 
(NS) 

7mo 5d/wk 
8hr/d Hepatic 70 Carpenter 1937230 (decreased glycogen) 

Renal 230 470 (mild nephropathy) 

63 Rat 
(Fischer- 344) 

28d 6hr/d Renal 400 Green et al. 1990 

64 Rat 
(Fischer- 344) 

13 wk 
5 d/wk 
6 hr/d 

Bd Wt 609 M JISA 19931400 M (decreased body weight 
gain) 

65 Rat 
(Sprague-
Dawley) 

90 d Hepatic Kyrklund et al. 1990320 M (increased liver weights) 

66 Rat 
(Fischer- 344) 

13 wk 5d/wk 
6hr/d Resp 800 NTP 19861600 (lung congestion) 

Hepatic 

Bd Wt 

200 

800 M 

400 liver congestion 

1600 M (body weight 20% lower 
than controls) 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

67 Rat 
(Fischer- 344) 

21d 6hr/d Hepatic 

Renal 400 

400 (hypertrophy) Odum et al. 1988 

68 Rat 
(Fischer- 344) 

28d 6hr/d Hepatic 

Renal 400 

200 (hypertrophy) Odum et al. 1988 

69 Rat 
CFY 

Gd 1-20 
8 hr/d Bd Wt 221 F 664 F (37% decreased body 

weight gain) 
Szakmary et al. 1997 

70 Rat 
(Long- Evans) 

6 hrs/day; 2 
wks 
pre-mating-matin 
(5d/wk) and 
GD1-20 

Hepatic 1000 F (increased relative 
maternal liver weight) 

Tepe et al. 1980 

Bd Wt 1000 F 

71 Rat 
(Long- Evans) 

GD1-20 (6 
hrs/day) Hepatic 1000 F (increased relative 

maternal liver weight) 
Tepe et al. 1980 

Bd Wt 1000 F 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

72 

73 

74 

75 

Rat 
(Alpk:APfSD) 

Mouse 
(B6C3F1) 

Mouse 
(Hybrid) 

Mouse 
(NMRI) 

19wk:11 wk, 
5d/wk 6hr/d; 
daily during 
mating/lacta 

28d 6hr/d 

13 wk 
5 d/wk 
6 hr/d 

30 d 24hr/d 

System 

Hepatic 

Renal 

Bd Wt 

Renal 

Hepatic 

Renal 

Bd Wt 

Hepatic 

Bd Wt 

LOAEL 

NOAEL 
(ppm) 

Less Serious 
(ppm) 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

1000 Tinston 1995 

300 M 1000 M (minimal chronic 
progressive 
glomerulonephropathy; 
increased pleomorphism 
within proximal tubular 
nuclei) 

1000 

400 Green et al. 1990 

265 609 (central enlargement of 
liver) 

JISA 1993 

265 609 (changes in proximal 
tubules) 

265 M 609 M (decreased body weight 
gain) 

9 (liver enlargement and 
vacuolization of 
hepatocytes) 

Kjellstrand et al. 1984 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

76 Mouse 
(NS) 

8 wk 6d/wk 
4hr/d Hepatic 

Renal 

Bd Wt 

200 F 

200 F 

200 F (fatty degeneration) Kylin et al. 1965 

77 Mouse 
(B6C3F1) 

13wk 5d/wk 
6hr/d Hepatic 200 400 (centrilobular liver 

necrosis) 
NTP 1986 

Renal 100 200 (karyomegaly of renal 
tubular epithelial cells) 

Bd Wt 1600 

78 Mouse 
(B6C3F1) 

28d 6hr/d Hepatic 200 (peroxisomal 
proliferation; fatty 
changes) 

Odum et al. 1988 

Renal 400 

79 Mouse 
(B6C3F1) 

21d 6hr/d Hepatic 400 (peroxisomal 
proliferation; fatty 
changes) 

Odum et al. 1988 

Immuno/ Lymphoret 
80 Rat 

(Sprague-
Dawley) 

6 hrs/day, 5 
days/wk. 4 
weeks 

Renal 400 

1000 F Boverhof et al. 2012 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Neurological 
81 Rat 

(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

30 or 90 d 

System 
NOAEL 

(ppm) 

LOAEL 

Less Serious 
(ppm) 

Serious 
(ppm) 

320 M (changes in the fatty acid 
composition of the brain) 

Reference 
Chemical Form 

Kyrklund et al. 1988, 1990 

Comments 

82 Rat 
(Fischer- 344) 

13 wks 
5 d/wk 
6 h/d 

200 800 (Increased apmlitude of 
flash evoked potential 
peak N3) 

Mattsson et al. 1998 

83 Rat 
(Alpk:APfSD) 

19wk:11 wk, 
5d/wk 6hr/d; 
daily during 
mating/lacta 

300 1000 (decreased activity, 
reduced response to 
sound, increased 
salivation, piloerection) 

Tinston 1995 

84 Rat 
(Sprague-
Dawley) 

4 or 12 wk 300 M 600 M (decreased brain weight; 
decrease in cytoskeletal 
proteins) 

Wang et al. 1993 

85 Gerbil 
(Mongolian) 

90 d 24hr/d 60 (decreased DNA levels in 
frontal cortex) 

Karlsson et al. 1987 

86 Gerbil 
(Mongolian) 

3 mo 24hr/d 60 (decreased DNA content 
in the frontal cerebral 
cortex) 

Rosengren et al. 1986 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

Reproductive 
87 Rat 

(albino) 
GD 0-18 (7 
hrs/day) 500 F NIOSH 1980 

88 Rat 
(albino) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 0-18 

500 F NIOSH 1980 

89 Rat 
(albino) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 6-18 

500 F NIOSH 1980 

90 Rat 
CFY 

Gd 1-20 
8 hr/d 221 F 664 F (increased 

pre-implantation loss) 
Szakmary et al. 1997 

91 Rat 
(Long- Evans) 

6 hrs/day; 2 
wks 
pre-mating-matin 
(5d/wk) and 
GD1-20 

1000 F Tepe et al. 1980 

92 Rat 
(Long- Evans) 

GD1-20 (6 
hrs/day) 1000 F Tepe et al. 1980 

93 Rat 
(Alpk:APfSD) 

19wk:11 wk, 
5d/wk 6hr/d; 
daily during 
mating/lacta 

300 1000 (significant reduction in 
the number of live born 
pups; decreased pup 
survival during lactation) 

Tinston 1995 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

94 Rabbit 
(New 
Zealand) 

GD 0-21 (7 
hrs/day) 500 F NIOSH 1980 

95 Rabbit 
(New 
Zealand) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 0-21 

500 F NIOSH 1980 

96 Rabbit 
(New 
Zealand) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 7-21 

500 F NIOSH 1980 

Developmental 
97 Rat 

(Long- Evans) 
6 hrs/day; 2 
wks 
pre-mating-matin 
(5d/wk) and 
GD1-20 

1000 Manson et al. 1981 

98 Rat 
(Long- Evans) 

6 hrs/day, 5 
days/week for 2 
weeks 
pre-mating -
mating 

1000 Manson et al. 1981 

99 Rat 
(Long- Evans) 

GD1-GD20 (6 
hrs/day) 1000 Manson et al. 1981 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

100 Rat 
(albino) 

GD 0-18 (7 
hrs/day) 500 NIOSH 1980 

101 Rat 
(albino) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 0-18 

500 NIOSH 1980 

102 Rat 
(albino) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 6-18 

500 NIOSH 1980 

103 Rat 
CFY 

Gd 1-20 
8 hr/d 221 664 (increased percentage 

fetuses with growth 
retardation and 
malformations) 

Szakmary et al. 1997 

104 Rat 
(Long- Evans) 

6 hrs/day; 2 
wks 
pre-mating-matin 
(5d/wk) and 
GD1-20 

1000 (decreased fetal body 
weight; increased 
skeletal anomalies) 

Tepe et al. 1980 

105 Rat 
(Long- Evans) 

GD1-20 (6 
hrs/day) 1000 (decreased fetal weight; 

increased soft tissue 
anomalies) 

Tepe et al. 1980 

42



568

1000

555

500

556

500

558

500

103

400

550

300

600

TE
TR

A
C

H
LO

R
O

E
TH

Y
LE

N
E

***D
R

A
FT FO

R
 P

U
B

LIC
 C

O
M

M
E

N
T***

3.  H
E

A
LTH

 E
FFE

C
TS

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

106 Rat 
(Long- Evans) 

6 hrs/day, 5 
d/wk, 2 wks 
pre-mating-matin 

1000 Tepe et al. 1980 

107 Rabbit 
(New 
Zealand) 

GD 0-21 (7 
hrs/day) 500 NIOSH 1980 

108 Rabbit 
(New 
Zealand) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 0-21 

500 NIOSH 1980 

109 Rabbit 
(New 
Zealand) 

7 hrs/day; 5 
days/week for 3 
weeks 
(pregestation) & 
GD 7-21 

CHRONIC EXPOSURE 
Death 
110 Rat 

(Fischer- 344) 
103wk 5d/wk 
6hr/d 

500 

400 M (reduced survival) 

NIOSH 1980 

Mennear et al. 1986; NTP 1986 

111 Rat 
(Sprague-
Dawley) 

6 hrs/day, 5 
days/wk 
12 months 

300 M 600 M (increased mortality from 
5th to 24th month of 
study attributed to 
chronic renal disease) 

Rampy et al. 1978 

43



067

100

178
15.8

314

20

20

20

030
10

031

21

21

324

15

TE
TR

A
C

H
LO

R
O

E
TH

Y
LE

N
E

***D
R

A
FT FO

R
 P

U
B

LIC
 C

O
M

M
E

N
T***

3.  H
E

A
LTH

 E
FFE

C
TS

Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

112 Mouse 
(B6C3F1) 

Systemic 
113 Human 

103wk 5d/wk 
6hr/d 

20 yr average Hepatic 15.8 (diffuse parenchymal 
changes revealed by 
ultrasound) 

100 M (reduced survival) Mennear et al. 1986; NTP 1986 

Brodkin et al. 1995 

114 Human 1-120 mo 
occup 
occup 

Hemato 20 Cai et al. 1991 

Hepatic 

Renal 

20 

20 

115 Human 14 yr 
occup 

Renal 10 (increased urine 
b-glucuronidase and 
lysozyme) 

Franchini et al. 1983 

116 Human 6 yr 
occup 

Hepatic 21 Lauwerys et al. 1983 

Renal 21 

117 Human 10 yr average 
occup 
occup 

Renal 15 (nephrotoxicity) Mutti et al. 1992 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments 

118 Human 12 yr average Renal 14 Solet and Robins 1991 
occup 

119 Human 9yr Renal 23 F (increased urinary Vyskocil et al. 1990 
occup lysozyme activity) 

120 Rat 
(Fischer- 344) 

104 wk 
5 d/wk 
6 hr/d 

Hepatic 200 (spongiosis hepatitis in 
males and increased 
alanine aminotransferase 
in females) 

JISA 1993 

Renal 50 M 200 M (increased relative kidney 
weight; nuclear 
enlargement of proximal 
tubules) 

Bd Wt 50 F 200 F (reduced body weight) 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

121 Rat 
(Fischer- 344) 

103wk 5d/wk 
6hr/d Resp 200 thrombosis; squamous 

metaplasia of nasal 
cavity 

Mennear et al. 1986; NTP 1986 

Gastro 

Renal 

200 M 400 M forestomach ulcers 

200 renal tubular 
karyomegaly 

Endocr 200 M (adrenal medullary 
hyperplasia) 

Bd Wt 400 

122 Rat 
(Sprague-
Dawley) 

6 hrs/day, 5 
days/wk 
12 months 

Hemato 600 Rampy et al. 1978 

Hepatic 

Renal 

600 

600 I 
a 
d 

Bd Wt 600 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments 

123 Mouse 
(Hybrid) 

104 wk 
5 d/wk 
6 hr/d 

Hepatic 10 M 50 M (angiectasis and 
increased serum 
aspartate 
aminotransferase and 

JISA 1993 

alanine 
aminotransferase) 

Renal 50 250 (nuclear enlargement 
and atypical dilation of 
proximal tubules) 

124 Mouse 
(B6C3F1) 

103wk 5d/wk 
6hr/d Resp 100 (acute passive 

congestion of the lungs) 
Mennear et al. 1986; NTP 1986 

Hepatic 100 hepatocellular 
degeneration 

Renal 100 nephrosis 

Bd Wt 200 

Neurological 
125 Human 1-30 yr 0.2 Altmann et al. 1995 

126 Human 0.2 Altmann et al. 1995 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments 

127 Human 1-120 mo 
occup 
occup 

20 (increase in subjective 
symptoms including 
dizziness) 

Cai et al. 1991 

128 Human 106 mo 
average 

b 
7.3 F (color vision loss) Cavalleri et al. 1994 

129 Human 10 yr 
occup 

15 F (increased reaction 
times) 

Ferroni et al. 1992 

130 Human 6 yr 21 Lauwerys et al. 1983 
occup 

131 Human occup 15.3 M Nakatsuka et al. 1992 
occup 

132 Human 15.3 M Nakatsuka et al. 1992 

133 Human 5.8 yr (mean) 0.11 (decreased visual 
contrast sensitivity) 

Schreiber et al. 2002 

134 Human 4.0 yr (mean) 0.32 F (decreased visual 
contrast sensitivity) 

Schreiber et al. 2002 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation	 (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments 

135	 Human 10 yr (mean) 0.05	 (decreased visual Storm et al. 2011 
contrast sensitivity) 

136 Gerbil 
(Mongolian) 

12 mo 24hr/d 120 M (phospholipid changes in 
the cerebral cortex and 

Kyrklund et al. 1984 

hippocampus) 

Cancer 
137	 Rat 104 wk 600 M (CEL: monocytic JISA 19935 d/wk(Fischer- 344) leukemia of spleen)6 hr/d 

138	 Rat 103wk 5d/wk 200 (CEL: mononuclear cell Mennear et al. 1986; NTP 19866hr/d(Fischer- 344) leukemia) 

139	 Mouse 104 wk 250 (CEL: hepatocellular JISA 19935 d/wk(Hybrid) adenomas and6 hr/d carcinomas) 
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Table 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments 

140 Mouse 103wk 5d/wk 100 (CEL: hepatocellular Mennear et al. 1986; NTP 19866hr/d(B6C3F1) carcinoma) 
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a The number corresponds to entries in Figure 3-1. 

b Used to derive a chronic-duration inhalation minimal risk level (MRL) of 0.006 ppm for tetrachloroethylene; the MRL was derived by converting the LOAEL of 7.3 ppm to an 
equivalent continuous exposure of 1.7 ppm and dividing by an uncertainty factor of 100 (10 for use of a LOAEL and 10 for human variability) and modifying factor of 3 for database 
deficiencies. ATSDR has adopted the chronic-duration inhalation MRL as the acute-duration and intermediate-duration inhalation MRLs.  See Appendix A for detailed discussion of 
the inhalation MRLs for tetrachloroethylene. 

ad lib = ad libitum; ALT = alanine aminotransferase; B = both sexes; Bd Wt = body weight; BUN = blood urea nitrogen; (C) = capsule; Cardio = cardiovascular; CEL = cancer effect 
level; d = day(s); EEG = electroencephalogram; Endocr = endocrine; (F) = feed; F = Female; (G) = gavage; Gastro = gastrointestinal; Gd = gestational day; Gn pig = guinea pig; 
(GO) = gavage in oil; (GW) = gavage in water; Hemato = hematological; hr = hour(s); Immuno/Lymphoret = immunological/lymphoreticular; LC50 = lethal concentration, 50% kill; Ld = 
lactation day; LD50 = lethal dose, 50% kill; LOAEL = lowest-observed-adverse-effect level; M = male; min = minute(s); Metab = metabolism; mo = month(s); Musc/skel = 
musculoskeletal; NOAEL = no-observed-adverse-effect level; NS = not specified; Occup = occupational; Pmd = pre-mating day; Pnd = post-natal day;  Ppd = post-parturition day; 
Resp = respiratory; x = time(s); (W) = drinking water; wk = week(s); yr = year(s) 
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Figure 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation
	
Acute (≤14 days)
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Figure 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (Continued)  
Acute (≤14 days)
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Figure 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (Continued)  
Intermediate (15-364 days)
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Figure 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (Continued)  
Intermediate (15-364 days)
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Figure 3-1 Levels of Significant Exposure to Tetrachloroethylene - Inhalation (Continued)  
Chronic (≥365 days)
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concentrations showed irritation of the respiratory tract at concentrations as low as 216 ppm for 2 hours 

(Rowe et al. 1952), with intense or unbearable irritation at concentrations ≥1,000 ppm, but no effects on 

pulmonary function at exposures up to 150 ppm, 7 hours/day for 5 days Carpenter 1937; Rowe et al. 

1952). Other case reports that lacked information on exposure levels and duration (Patel et al. 1973; 

Tanios et al. 2004;) reported respiratory hypersensitivity and pulmonary edema in humans exposed to 

tetrachloroethylene. In animal studies, nasal lesions were observed in mice exposed to 300 ppm for 

5 days (Aoki et al. 1994; Suzaki et al. 1997) and in rats exposed to ≥200 ppm for 2 years (Mennear et al. 

1986; NTP 1986).  Pulmonary congestion was seen in rats exposed to 1,600 ppm for 13 weeks and in 

mice exposed intermittently to concentrations ≥100 ppm for 2 years (Mennear et al. 1986; NTP 1986). 

Intense irritation of the upper respiratory tract was reported in volunteers exposed to high concentrations 

(>1,000 ppm) of tetrachloroethylene (Carpenter 1937; Rowe et al. 1952). These older acute inhalation 

studies in humans were limited by small numbers of experimental volunteer subjects, incomplete 

characterization of subjects, variable concentrations of tetrachloroethylene, and reliance on self-reported 

symptoms, which are subjective.  Respiratory irritation (irritation of the nasal passages) was reported in 

workers exposed to tetrachloroethylene vapors at levels of 232–385 ppm in a degreasing operation (Coler 

and Rossmiller 1953) and in volunteers exposed to concentrations as low as 216 ppm for 45 minutes to 

2 hours (Rowe et al. 1952). Volunteers exposed to concentrations as high as 1,060 ppm could tolerate no 

more than 1–2 minutes of exposure before leaving the chamber (Rowe et al. 1952).  

An experimental human exposure study titled Tetrachloroethylene:  Development of a biologic standard 

for the industrial worker by breath analysis, completed by Stewart and colleagues, was first published by 

NIOSH in 1974.  This publication can now be obtained from the National Technical Information Service 

(NTIS) with a 1981 date, and is cited as Stewart et al. (1981) throughout this Profile.  In this study, four 

male volunteers were sequentially exposed to 0, 20, 100, or 150 ppm tetrachloroethylene vapor for 

7.5 hours/day, 5 days/week (Stewart et al. 1981).  The men were exposed to each concentration for 

1 week.  Once each week, pulmonary function was assessed at both rest and during two levels of exercise 

with forced maximum expiratory flow measurements, while alveolar-capillary gas exchange was 

measured by single breath carbon monoxide diffusion.  The exposures to tetrachloroethylene at these 

vapor concentrations and time intervals had no effect on the pulmonary function measurements. 

Case reports suggest possible pulmonary effects of exposure to tetrachloroethylene, but do not contain 

exposure information.  A case report of hypersensitivity pneumonitis attributed the condition to 

tetrachloroethylene exposure; the woman worked as a dry cleaner (Tanios et al. 2004, see also 
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Section 3.2.1.3).  Her symptoms included exertion-related dyspnea and a cough; CT scan of her chest 

showed a ground glass pattern and poorly defined parenchymal nodules.  Bronchoalveolar lavage analysis 

indicated lymphocytosis. The investigators diagnosed the case as hypersensitivity pneumonitis related to 

tetrachloroethylene exposure. Pulmonary edema occurred in a 21-year-old male laundry worker after 

exposure to tetrachloroethylene vapors in a distilling operation; he became comatose shortly after 

exposure and was diagnosed with pulmonary edema after his rescue and admission to the hospital (Patel 

et al. 1973). 

In a study designed to examine the effects of tetrachloroethylene on the respiratory mucosa, epithelial 

degeneration was observed in mice exposed to tetrachloroethylene at 300 ppm for 6 hours/day for 5 days 

(Aoki et al. 1994). The degeneration was more severe in the olfactory mucosa compared to other sites in 

the respiratory mucosa.  Dilation of Bowman's glands and atrophy of olfactory nerves were also observed. 

Male mice exposed to 300 ppm tetrachloroethylene for 6 hours/day on 5 days exhibited nasal discharge 

containing exfoliated epithelial cells and neutrophils, as well as lesions consisting of mucosal erosions in 

the olfactory region and inflammatory cell infiltration in the olfactory epithelium 2 weeks after exposure 

(Suzaki et al. 1997).  Few changes were noted in the respiratory epithelium. In mice examined 1, 2, and 

3 months after exposure, histopathological examination revealed evidence of repair of the olfactory 

mucosa; however, some of the olfactory epithelium was replaced by ciliated epithelium, and atrophy of 

the olfactory nerves and Bowman’s glands were noted (Suzaki et al. 1997). 

Congestion of the lungs was reported in rats exposed intermittently to tetrachloroethylene at 1,600 ppm, 

but not 800 ppm, for 13 weeks (NTP 1986). Thrombosis and squamous metaplasia were observed in the 

nasal cavity of rats exposed intermittently at ≥200 ppm for 103 weeks (Mennear et al. 1986; NTP 1986). 

In mice exposed intermittently to tetrachloroethylene at ≥100 ppm for 103 weeks, acute passive 

congestion of the lungs was observed (Mennear et al. 1986; NTP 1986). 

Cardiovascular Effects. Few studies have examined cardiovascular effects of tetrachloroethylene in 

humans or animals.  Three acute duration experimental studies reported no effects on heart rate, blood 

pressure, and/or electrocardiograms in volunteers exposed to concentrations up to 150 ppm for up to 

5 days (Ogata et al. 1971; Stewart et al. 1977, 1981). A case report of cardiac arrhythmia in a male dry 

cleaning worker did not report exposure concentrations, but did report a plasma concentration of 3.8 ppm 

tetrachloroethylene (Abedin et al. 1980). The only animal study of cardiovascular effects (Reinhardt et al. 
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1973) did not observe epinephrine-induced cardiac arrhythmia in beagle dogs exposed to concentrations 

up to 10,000 ppm. 

No effects on heart rate or blood pressure were noted in four men exposed to tetrachloroethylene at 

87 ppm for 3 hours (Ogata et al. 1971).  Ten adult male volunteers and 10 adult female volunteers were 

exposed to 0, 20, 100, or 150 ppm tetrachloroethylene vapor for 1, 3, or 7.5 hours/day, 5 days/week for 

1 week at each concentration (Stewart et al. 1981).  During the exposure periods, blood pressure and pulse 

rate were measured every hour, while electrocardiograms were monitored continuously via telemetry.  

There was no deviation from the baseline measurements that were obtained preexposure or for the 

postexposure follow-up period (Stewart et al. 1981).  These observations confirmed those of a separate 

study of six males and six females in which no effects on the electrical activity of the heart were observed 

following random exposure at 0, 25, and 100 ppm tetrachloroethylene vapor for 5.5 hours/day, 

5 days/week (Stewart et al. 1977).  The total study lasted 11 weeks, although the exposure concentrations 

varied daily throughout the study.  A case report describes a 24-year-old man who experienced cardiac 

arrhythmia (frequent premature ventricular beats).  The patient had been employed for 7 months in a dry 

cleaning facility where he used tetrachloroethylene (Abedin et al. 1980).  Plasma tetrachloroethylene was 

measured at 0.15 ppm on his 5th day of hospitalization.  The patient was discharged the next day, but 

returned in 2 weeks for outpatient evaluation with a recurrence of skipping of heartbeats, headache, and 

dizziness.  At that time, plasma tetrachloroethylene was measured at 3.8 ppm.  Since the biological 

exposure index associated with an 8-hour exposure of 25 ppm is 0.5 mg/L tetrachloroethylene in blood 

(ACGIH 2012), this subject was exposed to relatively high concentrations. The patient was reported to be 

asymptomatic 1 month after finding different employment (Abedin et al. 1980). 

Epinephrine-induced cardiac arrhythmia was not induced in beagle dogs (5 and 12 dogs at the low and 

high exposure levels, respectively) exposed for 10 minutes by face mask to 5,000 or 10,000 ppm 

tetrachloroethylene (Reinhardt et al. 1973). This study was complicated by the dogs’ struggling, which 

could represent irritant effects of these high tetrachloroethylene concentrations on the upper respiratory 

tract. 

Gastrointestinal Effects. No studies were located regarding gastrointestinal effects in humans after 

inhalation exposure to tetrachloroethylene.  Forestomach ulcers were observed in male rats exposed 

intermittently to tetrachloroethylene at 400 ppm for 103 weeks (NTP 1986).  Ulcers were not observed at 

200 ppm. 
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Hematological Effects. Available data provide suggestive, but not conclusive, information on 

potential hematologic effects of inhalation exposure to tetrachloroethylene; an experimental study 

observed no change from baseline hematology parameters after exposure to concentrations up to 150 ppm 

(Stewart et al. 1977, 1981), while a study of Egyptian dry cleaners exposed to <140 ppm 

tetrachloroethylene suggested decrements in hemoglobin and red blood cell count compared with an 

unexposed referent group (Emara et al. 2010). Limited animal data do not provide support for the 

findings in humans.  Boverhof et al. (2012) observed no changes in hematology parameters in rats 

exposed to concentrations up to 1,000 ppm for 4 weeks, while a chronic cancer bioassay (JISA 1993) 

observed only increased mean corpuscular hemoglobin concentration (MCHC) in rats and gender-specific 

effects in mice. 

Controlled human exposure studies of effects on complete blood count have not shown any change from 

preexposure values after exposures of adult male and female volunteers (6–10 per sex) to 0, 20, 100, or 

150 ppm tetrachloroethylene vapor for 1, 3, or 7.5 hours/day, 5 days/week for 1 week at each vapor 

concentration (Stewart et al. 1981) or to 0, 25, or 100 ppm tetrachloroethylene vapor for 5.5 hours/day, 

5 days/week, over an 11-week period (Stewart et al. 1977). 

In contrast to the volunteer data, one epidemiological study (Emara et al. 2010) observed changes in 

selected hematology parameters among men employed as dry cleaners in Egypt; an earlier study (Cai et 

al. 1991) did not provide support for these findings.  Emara et al. (2010) observed significantly (p<0.05) 

decreased hemoglobin, red blood cell counts, and mean cell hemoglobin concentration in male dry cleaner 

employees when compared with age- and lifestyle-matched unexposed referent subjects (n=40/group; 

20 smokers, 20 nonsmokers).  Mean corpuscular volume (MCV) and mean corpuscular hemoglobin 

(MCH) were not affected by exposure.  Average tetrachloroethylene exposure levels of <140 ppm were 

estimated from measurements made at various sites in each shop (Emara et al. 2010).  No changes in 

hemoglobin concentration, red or white blood cell count, or hematocrit were observed in Chinese dry 

cleaning workers (29 men and 27 women) exposed to tetrachloroethylene at a geometric mean time-

weighted average (TWA) concentration of 20 ppm, when compared with unexposed controls (30 men and 

35 women) (Cai et al. 1991). 

In animals, intermediate-duration studies of exposure up to 1,000 ppm have not suggested effects of 

tetrachloroethylene on hematology.  Hematology end points (including hemoglobin, hematocrit, red cell 

and reticulocyte counts, total and differential white cell counts, and platelet counts) were not affected in 
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female Sprague-Dawley rats at the end of 4 weeks of exposure to tetrachloroethylene vapors 6 hours/day, 

5 days/week at concentrations of 0, 100, 300, or 1,000 ppm (Boverhof et al. 2012). A dose-dependent 

decrease in erythrocyte δ-aminolevulinate dehydratase activity, which is necessary for heme production, 

was observed in rats exposed to 200 and 600 ppm, but not 50 ppm, tetrachloroethylene for 4 weeks (Soni 

et al. 1990).  It is not clear if exposure was intermittent or continuous.  A transient increase in 

reticulocytes was observed in mice exposed to tetrachloroethylene at 135 and 270 ppm during the first 

few weeks of an 11.5-week study (Seidel et al. 1992).  Microscopic examination of bone marrow revealed 

no effect on pluripotent stem cells and only a small reduction in erythroid committed cells.  Because of a 

lack of statistical analysis, NOAELs and LOAELs were not clearly identified in the Seidel et al. (1992) 

study. Rats exposed to 230 or 470 ppm tetrachloroethylene for up to 160 days exhibited splenic 

congestion and increased hemosiderin deposits (Carpenter 1937); however, the study is limited by the use 

of sick animals (parasites, pneumonia), nonstandard study protocols, rats of undefined strain, and 

inadequate controls.  

In a chronic cancer bioassay (JISA 1993), hematology changes observed at sacrifice of Crj:BDF1 mice 

after 104 weeks of exposure to 250 ppm tetrachloroethylene (the highest concentration tested) included 

increased red blood cells and hematocrit, increased hemoglobin (females only) and reduced MCV, MCH, 

and MCHC (males).  In the corresponding rat study (JISA 1993), the only hematology change noted was 

an increase in mean corpuscular hemoglobin in female rats exposed to 600 ppm (the highest concentration 

tested). 

Musculoskeletal Effects. No studies were located regarding musculoskeletal effects in humans after 

inhalation exposure to tetrachloroethylene.  Histological changes were not observed in the limb muscles 

of rats exposed to tetrachloroethylene at 50, 200, or 800 ppm 6 hours/day, 5 days/week for 13 weeks 

(Mattsson et al. 1992, 1998). 

Hepatic Effects 

Hepatic Effects in Humans. The liver may be a target organ in humans exposed to tetrachloroethylene.  

Case reports (Coler and Rossmiller 1953; Hake and Stewart 1977; Meckler and Phelps 1966; Saland 

1967; Stewart et al. 1961a) have documented liver injury consisting of hepatomegaly, icterus, and clinical 

chemistry changes in exposed humans, but no information on exposure concentrations was available. 

Controlled, acute-duration human exposure studies (Stewart et al. 1977, 1981) using concentrations up to 

150 ppm tetrachloroethylene have not shown effects on serum levels of hepatic enzymes. However, 
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studies of occupationally-exposed individuals have provided suggestive evidence for subclinical liver 

effects (changes in GGT isozyme fractions and diffuse parenchymal changes seen on ultrasound) in 

humans exposed chronically to lower levels (10–20 ppm TWA) of tetrachloroethylene (Brodkin et al. 

1995; Gennari et al. 1992).  Other serum markers for liver function were not altered at these exposure 

levels (Brodkin et al. 1995; Cai et al. 1991; Lauwerys et al. 1983). 

Hepatocellular damage was documented by biopsy in a case study of a woman exposed occupationally to 

tetrachloroethylene fumes for 2.5 months (Meckler and Phelps 1966).  Liver damage also has been 

diagnosed in exposed individuals by the presence of hepatomegaly, icterus, and elevations of serum 

glutamic oxaloacetic transaminase (SGOT), bilirubin, and urinary urobilinogen (Coler and Rossmiller 

1953; Hake and Stewart 1977; Saland 1967; Stewart et al. 1961a).  These effects were generally observed 

several days after acute exposure to concentrations that resulted in nervous system effects. There was one 

case report of diffuse fatty liver in a dry cleaner who died shortly after being exposed to tetrachloro-

ethylene fumes (Levine et al. 1981).  Because of the brief interval between exposure and death, this liver 

lesion may have been preexistent. 

Ten adult male volunteers and 10 adult female volunteers were sequentially exposed to 0, 20, 100, or 

150 ppm tetrachloroethylene vapor for 1, 3, or 7.5 hours/day, 5 days/week for 1 week at each exposure 

concentration (Stewart et al. 1981).  No ethanol consumption was permitted during the exposure 

sequence.  A complete panel of clinical chemistries including serum alkaline phosphatase, serum glutamic 

pyruvic transaminase (SGPT), SGOT, and serum bilirubin was obtained each week.  These results were 

compared to the preexposure values; no deviation from baseline was observed (Stewart et al. 1981).  

Similarly, when six males and six females were randomly exposed to 0, 25, or 100 ppm tetrachloro-

ethylene vapor for 5.5 hours/day, 5 days/week, over an 11-week period, no deviations from baseline 

values were observed in weekly blood samples analyzed for serum alkaline phosphatase, SGPT, SGOT, 

and serum bilirubin (Stewart et al. 1977). 

In two studies assessing hepatic enzyme levels in serum of dry cleaners exposed to TWA concentrations 

of ~20 ppm tetrachloroethylene, no evidence of increased enzyme levels including SGOT, SGPT, and 

alkaline phosphatase was noted (Cai et al. 1991; Lauwerys et al. 1983). However, subtle differences in 

the isoenzyme fractionation of serum gamma-glutamyltransferase (GGT) enzymes were observed in 

141 workers exposed to tetrachloroethylene at an average concentration of 11.3 ppm relative to 

130 unexposed controls (Gennari et al. 1992).  Both exposed and control subjects were chosen on the 

basis of normal liver function tests (SGOT, SGPT, serum alkaline phosphatase, lactate dehydrogenase 
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[LDH], and 5'-nucleotidase).  In exposed workers, total GGT was significantly (1.4-fold; p<0.01) 

increased, principally as a result of an increase in GGT-2.  Small amounts of GGT-4 were only observed 

in exposed workers.  No correlation between serum GGT levels and worker tetrachloroethylene exposure 

level or duration was found.  The investigators indicated that GGT-4 is associated with hepato-biliary 

impairment and that further investigation is required to determine why low-level exposure to 

tetrachloroethylene is associated with changes in the GGT isoenzyme profile in workers without any other 

evidence of liver disease. 

Changes in serum levels of liver enzymes may not be the most sensitive marker of liver effects following 

exposure to tetrachloroethylene, as an ultrasound study suggested morphological changes in the absence 

of elevated serum enzymes.  In dry cleaning workers exposed to an average of 15.8 ppm tetrachloro-

ethylene for 20 years, ultrasound revealed diffuse parenchymal changes in the livers of 18/27 (67%) 

exposed compared with 10/26 (38%; significantly different at p<0.05) unexposed laundry workers 

(Brodkin et al. 1995).  An exposure-related trend was also noted, with parenchymal changes observed in 

all 5 subjects with exposures >15 ppm, in 6 of the 12 subjects with exposures <15 ppm, and in 

10/26 (38%) unexposed laundry workers.  No changes in serum markers of liver damage (SGOT, SGPT, 

GGT, alkaline phosphatase, and total and direct bilirubin) were noted in these workers (Brodkin et al. 

1995). The mean age and duration of employment of the exposed and control groups differed 

significantly (average age of exposed subjects was 46 years, compared with 38 years in controls, and 

exposed subjects had worked an average of 15 years longer than controls), limiting the conclusions that 

can be drawn from this study. 

Hepatic Effects in Animals. Hepatic lesions are clearly shown in experimental animals during inhalation 

exposure to tetrachloroethylene.  Mice are more sensitive to this effect than rats, as demonstrated in 

studies of acute, intermediate, and chronic duration. The lowest LOAELs for hepatic effects in animals 

exposed for acute, intermediate, and chronic durations are 200 ppm (mice; Kylin et al. 1963), 9 ppm 

(mice; Kjellstrand et al. 1984), and 50 ppm (mice; JISA 1993). Chronic exposure of mice to 

tetrachloroethylene results in heptaocellular adenomas and carcinomas, while these tumor types are not 

increased by exposure of rats (JISA 1993; NTP 1986).  Section 3.2.1.7 provides additional details of the 

liver cancer data on tetrachloroethylene. 

The available acute-duration inhalation studies demonstrate liver effects in mice exposed to 

concentrations as low as 200 ppm, while rats appear to be resistant to hepatotoxic effects even at 

concentrations more than 10-fold higher.  Hepatocellular vacuolization occurred after a single 4-hour 
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exposure of mice to ≥200 ppm concentrations of tetrachloroethylene (Kylin et al. 1963).  This lesion was 

also reported in 4/5 male B6C3F1 mice exposed to 875 ppm and in all male and female mice exposed to 

1,750 ppm tetrachloroethylene for 14 days; vacuolization was not present at 425 ppm (NTP 1986). In 

another 14-day study, JISA (1993) observed fading of the liver at necropsy of mice exposed to ≥400 ppm, 

along with “central enlargement” of the liver at the highest concentration (1,600 ppm); no additional 

details were provided.  Liver lesions were not observed in rats exposed for 14 days to concentrations up to 

1,750 ppm in the study by NTP (1986) or up to 3,200 ppm in the study by JISA (1993). 

The type of liver lesions differs markedly between mice and rats after intermediate- and chronic-duration 

exposures to tetrachloroethylene.  Mice develop vacuolization, peroxisome proliferation, necrosis, and, 

with prolonged exposure, neoplasia; effects in rats appear to be less severe, consisting of centrilobular 

hypertrophy and hyperplasia.  In a study correlating light microscopic and ultrastructural liver effects with 

liver levels of cyanide-insensitive palmitoyl CoA oxidase, a marker for peroxisomal β-oxidation, 

peroxisome proliferation was observed in mice, but not in rats (Odum et al. 1988).  Animals were exposed 

to 200 ppm of tetrachloroethylene for 28 days or 400 ppm for 14, 21, or 28 days.  Centrilobular 

hepatocellular vacuolization was induced in mice by tetrachloroethylene exposure.  Electron microscopy 

revealed that this effect corresponded to lipid accumulation.  Centrilobular hepatocytes with cytoplasmic 

eosinophilia on light microscopy had marked proliferation of cytoplasmic peroxisomes at the 

ultrastructural level, and there was a significant increase in the marker enzyme.  These changes occurred 

in mice at both doses and all exposures and were most pronounced in male mice. 

When NMRI mice were exposed to 0, 9, 37, 75, or 150 ppm tetrachloroethylene continuously for 30 days 

(Kjellstrand et al. 1984), exposed mice developed hepatocellular vacuolization and enlargement.  Lesions 

were observed at 37 ppm and were noted to be most pronounced at exposures to 75 and 150 ppm; further 

details were not provided. Relative liver weights were not calculated; however, absolute liver weights 

were significantly elevated at all exposure concentrations and remained elevated 120 days following 

exposure to 150 ppm (Kjellstrand et al. 1984). In a 13-week study, male mice exposed to ≥200 ppm 

tetrachloroethylene exhibited mitotic alterations in the liver, while both sexes had leukocytic infiltrations, 

centrilobular necrosis, and bile stasis at ≥400 ppm (NTP 1986).  

In contrast to the effects seen in mice in the study by Odum et al. (1988), which included vacuolization, 

lipid accumulation, and peroxisome proliferation, when rats were exposed to 200 ppm of 

tetrachloroethylene for 28 days or 400 ppm for 14, 21, or 28 days, male rats in both dose groups and 

female rats exposed to 400 ppm developed centrilobular hepatocellular hypertrophy (Odum et al. 1988).  
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Ultrastructural findings consisted of proliferation of smooth endoplasmic reticulum, with no increase in 

peroxisomes (Odum et al. 1988). Centrilobular hypertrophy was also the only liver lesion in female 

Sprague-Dawley rats exposed to tetrachloroethylene vapors at 0, 100, 300, or 1,000 ppm, 6 hours/day, 

5 days/week for 4 weeks in an immunotoxicity study.  Relative liver weight was significantly increased at 

300 and 1,000 ppm (8 and 9% higher than controls, respectively) (Boverhof et al. 2012).  Very slight 

hypertrophy of the centrilobular hepatocytes was observed in 4/8 rats exposed to 300 ppm and in 7/8 rats 

exposed to 1,000 ppm tetrachloroethylene; the control incidence was not reported (Boverhof et al. 2012). 

Dose-related liver congestion was observed in rats exposed to tetrachloroethylene for 13 weeks, with 

8/20, 10/20, and 15/19 rats affected at 400, 800, and 1,600 ppm tetrachloroethylene, respectively; no liver 

effects were observed at 200 ppm (NTP 1986).  In a reproductive toxicity study, hepatic effects were not 

observed in parental male and female rats exposed to 1,000 ppm of tetrachloroethylene 6 hours/day, 

5 days/week for 11–19 weeks (Tinston 1995). 

Chronic inhalation bioassays of mice and rats confirm the sensitivity of mice to hepatic effects of 

tetrachloroethylene and the qualitative differences in the lesions induced in the two species. 

Hepatocellular degeneration and necrosis occurred in male mice exposed to 100 and 200 ppm 

tetrachloroethylene for 103 weeks and in females exposed to 200 ppm (NTP 1986).  Similar effects were 

seen in another chronic bioassay of Crj:BDF1 mice; at ≥50 ppm, serum aspartate aminotransferase (AST) 

and alanine aminotransferase (ALT) were increased and angectasis was observed in the livers of males, 

and at 250 ppm, serum AST and ALT were increased and angectasis was observed in females; absolute 

and relative liver weight were increased and focal hepatocellular necrosis occurred in males; and central 

degeneration of the liver was seen in both sexes.  Both sexes of mice also had increased incidences of 

hepatocellular tumors in both studies at exposure concentrations ≥100 ppm (JISA 1993; NTP 1986).  

Liver effects were not reported in rats exposed chronically to 200 or 400 ppm tetrachloroethylene in the 

study by NTP (1986), but the effects of mononuclear cell leukemia infiltrates may have obscured subtle 

compound-induced changes. The other available chronic bioassay (JISA 1993) reported increased serum 

ALT in female rats and spongiosis hepatitis in males exposed to ≥200 ppm.  At 600 ppm (the highest 

concentration tested), serum ALT was increased in males, triglycerides were reduced in females, and the 

incidence of liver hyperplasia was increased in male rats.  Unlike the mice, exposed rats did not exhibit an 

increased incidence of liver tumors in either study (JISA 1993; NTP 1986).  These studies are discussed 

further in Section 3.2.1.7. 
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Renal Effects 

Renal Effects in Humans. The kidney may also be affected in humans exposed to tetrachloroethylene, 

based on information provided in a case report of accidental exposure (Hake and Stewart 1977) and 

studies of dry cleaning workers exposed chronically to tetrachloroethylene (Bundschuh et al. 1993; 

Franchini et al. 1983; Mutti et al. 1992; Price et al. 1995; Verplanke et al. 1999; Vyskocil et al. 1990).  

Several studies of occupational populations suggest an association between tetrachloroethylene exposure 

to concentrations between 10 and 85 ppm and alterations in urinary and serum markers indicative of 

glomerular and/or tubular dysfunction (Franchini et al. 1983; Mutti et al. 1992; Vyskocil et al. 1990).  

These studies were generally of small populations (the largest was 82 subjects) with varying exposure 

durations, but measured sensitive indicators of renal function. Other studies measuring urinary proteins, 

n-acetyl-glucosaminidase (NAG), blood urea nitrogen (BUN), and serum creatinine have not shown 

effects at occupational exposure levels (Cai et al. 1991; Solet and Robins 1991). A retrospective cohort 

study showed an increased risk of hypertensive end-stage renal disease in dry cleaning workers exposed 

to tetrachloroethylene (Calvert et al. 2011). 

Limited information is available on renal effects after acute-duration exposure of humans.  Evidence of 

renal dysfunction, including proteinuria and hematuria, was reported in an individual after accidental 

exposure to anesthetic concentrations (exposure estimates were not reported, but the subject was 

unconscious) of tetrachloroethylene vapor (Hake and Stewart 1977).  In acute-duration controlled human 

exposure studies, no changes from baseline levels of urinalysis parameters or BUN were observed after a 

1-week exposure to concentrations up to 150 ppm for up to 7.5 hours/day (Stewart et al. 1981). 

Assessment of urinary markers of renal damage in dry cleaning workers exposed to tetrachloroethylene in 

several studies has provided indicators of renal changes after chronic exposure to concentrations of 10– 

23 ppm (Franchini et al. 1983; Vyskocil et al. 1990).  Workers in dry cleaning shops exposed for an 

average of 14 years to an estimated TWA concentration of 10 ppm of tetrachloroethylene had increased 

urinary levels of lysozyme and β-glucuronidase, suggestive of mild tubular damage (Franchini et al. 

1983). Urinary lysozyme activity was also increased in workers exposed to an average of 23 ppm for 

about 9 years (Vyskocil et al. 1990).  At unspecified exposure concentrations and durations, an increase in 

urinary fibronectin was observed in workers exposed to tetrachloroethylene (Bundschuh et al. 1993); no 

effects on urinary proteins (high and low molecular weight) or NAG were observed.  No effects on BUN 

or serum creatinine were observed in workers exposed at an average concentration of 20 ppm for 1– 
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120 months (Cai et al. 1991), and occupational exposure to tetrachloroethylene at an average 

concentration of 14 ppm for an average of 12 years had no effects on total urinary protein, albumin, NAG, 

and creatinine (Solet and Robins 1991).  In another report, serum creatinine and urinary albumin, 

β2-microglobulin, and retinol-binding protein levels were normal in dry cleaning workers exposed to a 

TWA concentration of 21 ppm of tetrachloroethylene for 6 years (Lauwerys et al. 1983). Relative to age-

and sex-matched unexposed controls, laminin fragments in the serum (n=37) and urine (n=50) of 

tetrachloroethylene-exposed workers were significantly increased, suggesting glomerular dysfunction 

(Price et al. 1995).  The exposure concentrations and the duration of exposure were not stated. 

In a more comprehensive examination of kidney function, 9 men and 41 women occupationally exposed 

to tetrachloroethylene from trace levels to 85 ppm were compared with 50 controls (Mutti et al. 1992).  

Exposure levels and parameters of kidney function were both measured over a long period of time to 

account for variability in the working cycle or seasonal fluctuations; however, the total duration of the 

study was not stated. The results showed an increase in markers suggesting an increase in the shedding of 

epithelial membrane components from tubular cells in the exposed group.  The following urinary markers 

were increased in exposed workers relative to unexposed workers: fibronectin; albumin; transferrin; 

brush-border antigens BBA, BB50, and HF5; and tissue nonspecific alkaline phosphatase.  Serum 

antiglomerular basement membrane antibodies and serum laminin levels were also significantly increased 

in exposed workers compared to controls. No effects on serum β2-microglobulin, creatinine, or urinary 

prostaglandins, glycosaminoglycans, NAG, or intestinal alkaline phosphatase were noted.  The 

investigators (Mutti et al. 1992) indicated that the significance of the findings was unclear, and they 

suggested that the changes could be a physiological adaptation to exposure or may represent an early state 

of potentially progressive renal disease. 

A larger study of workers exposed to lower concentrations showed only subtle effects on urinary markers 

of renal function.  Verplanke et al. (1999) measured urinary markers in dry cleaning employees 

(82 exposed and 19 unexposed ) in the Netherlands, whose TWA exposure, as measured in alveolar air 

samples, was 8.4 mg/m3 (1.2 ppm).  The exposed and control groups did not differ significantly with 

respect to age, sex, body mass, percent of smokers, alcohol consumption, or duration of employment.  No 

differences in urinary levels of NAG, β-galactosidase, alanine aminopeptidase, or albumin were observed; 

a significant increase in retinol binding protein (75.4 versus 41.6 μg/g creatinine in unexposed employees) 

was noted.  The study authors reported that retinol binding protein is a more sensitive indicator of renal 

tubular dysfunction than NAG.  Renal parameters did not correlate with exposure concentration or with a 

measure of cumulative dose that took into account concentration and exposure duration. 
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Calvert et al. (2011) observed a significantly elevated risk of hypertensive end-stage renal disease among 

1,296 dry cleaning workers in four U.S. cities.  The standardized incidence ratios (SIRs) were 1.98 (95% 

confidence interval [CI] 1.11–3.27) for the entire cohort and 2.88 (95% CI 1.15–5.23) in the subgroup 

exposed only to tetrachloroethylene (n=494).  

Renal Effects in Animals. In animal studies, adverse renal effects have been observed in rodents exposed 

to tetrachloroethylene. Little information on renal effects after acute-duration exposure is available, but 

intermediate-duration studies have shown tubular histopathology, increased kidney weights, and 

glomerulonephropathy in rats, mice, and guinea pigs exposed to concentrations >400 ppm (Carpenter 

1937; JISA 1993; Jonker et al. 1996; NTP 1986; Rowe et al. 1952; Tinston 1995).  Both male and female 

mice and rats exhibited renal effects from exposure, but F344 rats appeared to be less susceptible than 

other strains. Similar nonneoplastic renal effects were observed in male and female rats (including F344 

rats) and male and female mice in chronic studies using lower exposure concentrations (JISA 1993; NTP 

1986) 

An acute-duration study reported hyaline droplets in proximal tubules, but no tubular damage or cell 

proliferation occurred in male rats exposed to 1,000 ppm by inhalation for 10 days (Green et al. 1990).  

JISA (1993) reported few details of its 14-day studies in rats and mice, but indicated that mice exhibited 

necrosis and regeneration of the proximal tubules in both sexes exposed to ≥800 ppm tetrachloroethylene; 

no renal effects were reported in rats.  In the 14-day study by NTP (1986), no renal histopathology 

changes were reported in rats or mice at exposure concentrations up to 1,750 ppm. 

In intermediate-duration studies, high concentrations of tetrachloroethylene were associated with renal 

effects in rats, mice, and guinea pigs.  Female Wistar rats exposed to 2,500 ppm tetrachloroethylene for 

32 consecutive days exhibited increased urine volume; increased protein, GGT, ALP, LDH, and NAG 

excretion; increased relative kidney weight; and increased incidences of mild multifocal tubular 

vacuolation and karyomegaly in the kidneys (Jonker et al. 1996).  Minimal chronic progressive 

glomerulonephropathy and increased pleomorphism within the proximal tubular nuclei were noted in 

male, but not female, Alpk:ApfSD rats exposed to tetrachloroethylene at 1,000 ppm for up to 19 weeks 

(6 hours/day, 5 days/week); no effects occurred at 300 ppm (Tinston 1995).  Albino rats of unspecified 

strain exposed to 470 ppm for 150 days or to 7,000 ppm for ≥40 exposures exhibited intratubular casts 

and swelling and desquamation of tubular epithelium (Carpenter 1937).  Available studies in F344 rats 

show few or no renal effects.  Kidney lesions did not occur in F344 rats exposed to 1,600 ppm on 
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6 hours/day, 5 days/week for 13 weeks; kidneys from lower dose groups were not examined 

microscopically (NTP 1986).  Likewise, the JISA (1993) 13-week study reported no renal findings in 

male or female F344DuCrj rats exposed to concentrations up to 1,400 ppm; however, the study authors 

reported “sporadic” urinalysis changes in both sexes of rat at exposures ≥609 ppm.  It is not clear whether 

the differences in renal toxicity stem from strain specificity or differences in the exposure regimens. 

At concentrations of ≤400 ppm, few renal changes were seen in rats of any strain. Intermittent exposure 

of Sprague-Dawley rats to 200 ppm tetrachloroethylene for 4 weeks induced renal P-450 enzymes (Soni 

et al. 1990); other end points of renal function were not assessed. Neither abnormal renal function nor 

histopathological findings were observed in Wistar-derived rats exposed to tetrachloroethylene vapor 

concentrations of 0, 100, 200, or 400 ppm for about 6 months (Rowe et al. 1952).  Peroxisomal 

proliferation was not induced in renal tubular epithelium of F344 rats or B6C3F1 mice exposed to 200 or 

400 ppm tetrachloroethylene for up to 28 days (Odum et al. 1988).  Male rats F344 rats exposed to 

400 ppm tetrachloroethylene for 28 days did not develop kidney lesions (Green et al. 1990). 

Few data on kidney effects are available in mice exposed for intermediate durations; these studies suggest 

that renal changes can occur at concentrations of ≥600 ppm for 13 weeks. Renal tubular karyomegaly 

(nuclear enlargement) occurred in 7/10 male and 7/10 female B6C3F1 mice exposed to 1,600 ppm 

tetrachloroethylene for 13 weeks (NTP 1986).  Renal effects were not seen at 100 ppm; kidneys of the 

remaining exposure groups (200, 400, and 800 ppm) were not examined microscopically.  JISA (1993) 

reported no urinalysis alterations in Crj:BDF1 mice, but indicated that concentrations of ≥609 ppm 

resulted in changes in the renal proximal tubules (further details were not provided). 

Guinea pigs that received 18 exposures of 7 hours each to 2,500 ppm tetrachloroethylene over a period of 

20 days had increased kidney weights with slight-to-moderate cloudy swelling of tubular epithelium 

(Rowe et al. 1952). Neither abnormal renal function nor histopathological findings were observed in 

guinea pigs exposed to tetrachloroethylene vapor concentrations of 0, 100, 200, or 400 ppm for about 

6 months (Rowe et al. 1952).  

Chronic bioassays indicate similar types of nonneoplastic renal effects in rats and mice at comparable 

exposure concentrations.  In the NTP (1986) chronic inhalation toxicity/oncogenicity study of 

tetrachloroethylene, F344 rats of each sex were exposed to 0, 200, or 400 ppm tetrachloroethylene, and 

B6C3F1 mice were exposed to 0, 100, or 200 ppm tetrachloroethylene for 103 weeks.  Dose-related 

increases in the incidence of renal tubular cell karyomegaly occurred in both species and sexes at all 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

  

   

  

         

   

     

   

     

      

  

 

  

 

     

     

   

    

    

    

 

   

    

     

      

  

 

  

       

     

   

      

  

    

69 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

exposure concentrations.  The highest incidences were seen in male rats (37/49 and 47/50 at 200 and 

400 ppm, compared with 1/49 controls) and male mice (17/49 and 46/60 at 100 and 200 ppm, compared 

with 4/49 controls).  This alteration was accompanied by low incidences of renal tubular cell hyperplasia 

and increased incidences of tubular cell adenoma or adenocarcinoma in male rats, but not in female rats or 

in male or female mice (NTP 1986).  JISA (1993) observed increased absolute and relative kidney 

weights in male and relative kidney weights in female F344 rats exposed to ≥200 ppm tetrachloroethylene 

for 104 weeks, nuclear enlargement of proximal tubules of the kidneys at ≥200 ppm in males and at 

600 ppm in females, atypical tubular dilation of the proximal tubules and exacerbation of chronic renal 

disease in males at 600 ppm. In Crj:BDF1 mice exposed for 104 weeks in the bioassay conducted by 

JISA (1993), nuclear enlargement of proximal tubules of the kidneys was noted in males and females 

exposed to 250 ppm (the highest concentration tested), and atypical tubular dilation of the proximal 

tubules occurred at this concentration in females. 

Endocrine Effects. Few studies in humans or animals have examined endocrine effects of 

tetrachloroethylene exposure. Data are limited to a study of prolactin levels in humans exposed 

occupationally (Ferroni et al. 1992) and histopathology examination of the pituitary glands in rats 

exposed for 13 weeks (Mattsson et al. 1992, 1998) or adrenal glands in rats and mice exposed for 2 years 

(JISA 1993; NTP 1986). Cortical and medullary hyperplasia of the adrenal glands is the only adverse 

effect noted in the available studies. 

Ferroni et al. (1992) measured prolactin levels in 30 controls and in 60 women occupationally exposed to 

tetrachloroethylene at a median concentration of 15 ppm.  Although they noted a significant increase in 

prolactin levels in the exposed women relative to the controls during the proliferative phase of the 

menstrual cycle, values of both groups were in the normal range.  Therefore, it is unlikely that the effect 

observed in this population has biological significance. 

Treatment-related histological changes were not observed in the pituitaries of rats exposed to 

tetrachloroethylene at 50, 200, or 800 ppm 6 hours/day, 5 days/week for 13 weeks (Mattsson et al. 1992, 

1998) or in rats or mice exposed to concentrations up to 250 ppm for 2 years (JISA 1993; NTP 1986).  

Medullary hyperplasia of the adrenal glands was observed in male rats at both exposure levels (5/49, 

14/49, and 24/49 at 0 [control], 200, and 400 ppm respectively), and increased incidence of cortical 

hyperplasia of the adrenal glands was observed in female rats at the high exposure (4/50, 6/49, and 11/47 

at 0 [control], 200, and 400 ppm respectively), when both groups were exposed to tetrachloroethylene for 
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103 weeks (NTP 1986).  Adrenal glands were not affected in mice in the chronic bioassay by NTP (1986) 

or in mice or rats in the bioassay reported by JISA (1993). 

Ocular Effects. Ocular effects of tetrachloroethylene in humans include irritation and vision 

decrements.  Effects on vision, including impairments in color vision and contrast discrimination, have 

been reported in people exposed to low levels of tetrachloroethylene (0.02–15 ppm) occupationally or 

through residing in buildings with co-located dry cleaners (Cavalleri et al. 1994; Gobba et al. 1998; 

Schreiber et al. 2002; Storm et al. 2011).  Because this effect may be a neurological effect rather than a 

direct action on the eyes, it is discussed in more detail in Section 3.2.1.4. 

Intense irritation of the eyes of humans was noted following acute exposure to high concentrations 

(930 ppm) of tetrachloroethylene vapors (Carpenter 1937; Rowe et al. 1952).  Burning or stinging 

sensations in the eyes occurred after exposure to 600 or 280 ppm; very mild irritation was reported by 

four subjects at exposure to 216 or 106 ppm (Rowe et al. 1952); and transient eye irritation was noted in 

six subjects during the first few minutes of exposure at 75–80 ppm (Stewart et al. 1961b).  The Rowe et 

al. (1952) and Carpenter (1937) studies are limited by small numbers of subjects, variable concentrations 

of tetrachloroethylene, and lack of measured clinical changes. Onofrj et al. (1999) reported acute optic 

neuritis in a 57-year-old female dry cleaner after 9 hours of ironing; her exposure during this activity was 

estimated to be as high as 64–252 ppm (see details in Section 3.2.1.4).  

Histological changes were not observed in the eyes of rats exposed to tetrachloroethylene at 50, 200, or 

800 ppm 6 hours/day, 5 days/week for 13 weeks (Mattsson et al. 1992, 1998). 

Body Weight Effects. No studies of body weight effects in humans exposed to tetrachloroethylene 

were identified in the available literature. In studies in laboratory animals, body weights were decreased 

in rats exposed to ≥1,750 ppm and in mice exposed to 3,200 ppm for 2 weeks (JISA 1993; NTP 1986).  

Studies of intermediate-duration exposures also showed body weight decrements at high (>1,000 ppm) 

concentrations in rats, mice, and guinea pigs (JISA 1993; NTP 1986; Rowe et al. 1952); however, the 

findings are not consistent across studies of the same species. Reduced body weights were observed in 

rats and mice exposed to ≥200 ppm in one of two chronic bioassays (JISA 1993) but not in the other 

(NTP 1986). 

Following intermittent exposure to tetrachloroethylene for 2 weeks, body weights of rats but not mice 

were significantly reduced at 1,750 ppm (NTP 1986). JISA (1993) indicated that rats and mice treated for 
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2 weeks with exposure to tetrachloroethylene concentrations up to 3,200 ppm exhibited decreased body 

weight gain, but did not indicate the effective concentrations or magnitude of change. Pregnant CD rats 

exposed to concentrations of 250 or 600 ppm tetrachloroethylene for 6 hours/day on gestation days 6–19 

exhibited decreased body weight gain (19% less than controls at both exposures) during gestation days 6– 

9; body weight gain did not differ from controls for the remainder of the exposure duration (Carney et al. 

2006).  

Following intermediate-duration exposure to tetrachloroethylene, body weights of rats were significantly 

reduced at 1,400 ppm (JISA 1993) or 1,600 ppm (NTP 1986); no body weight changes greater than 10% 

were noted in rats exposed at 800 ppm (Mattsson et al. 1992, 1998) or 1,000 ppm (Tinston 1995).  No 

effects on body weight were noted in mice intermittently exposed to tetrachloroethylene for intermediate 

durations at concentrations as high as 1,600 ppm (Kjellstrand et al. 1985; Kylin et al. 1965; NTP 1986); 

however, decreased body weight gain was reported in male mice exposed to ≥609 ppm and female mice 

exposed to 1,400 ppm in the 13-week study by JISA (1993). Guinea pigs exposed to tetrachloroethylene 

at 2,500 ppm for 24 days lost weight, and female guinea pigs exposed to 200 ppm 7 hours/day for 

158 exposures in 220 days showed a significantly lower (18% lower than air-exposed controls, p=0.011) 

final body weight (Rowe et al. 1952).  Limitations of this study include the use of small numbers of 

animals and intercurrent infection. 

Body weight effects were not observed in rats exposed to tetrachloroethylene at 400 ppm or in mice 

exposed at 200 ppm for 103 weeks (NTP 1986). However, male rats exposed to 600 ppm, female rats 

exposed to ≥200 ppm, and male and female mice exposed to 250 ppm tetrachloroethylene for 2 years 

exhibited body weight decrements (magnitude of changes was not reported) throughout most of the 

exposure period in the chronic bioassay by JISA (1993).  

3.2.1.3  Immunological and Lymphoreticular Effects 

The available studies of immunological effects in humans exposed to tetrachloroethylene provide 

suggestive evidence for alterations in blood biomarkers related to inflammation and hypersensitivity; 

however, the data are limited and exposure concentrations are uncertain.  The only study explicitly 

examining immune system effects in animals exposed to tetrachloroethylene via inhalation was a 4-week 

study that observed no immune system effects in rats at concentrations up to 1,000 ppm (Boverhof et al. 

2012). 
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Emara et al. (2010) observed increased serum and cellular IL-4 levels and serum IgE levels, potentially 

indicative of enhanced hypersensitivity responses, in Egyptian dry cleaners.  Hematological parameters 

(see Section 3.2.1.3), serum immunoglobulin levels, and cytokine levels were measured in groups of male 

dry cleaner employees and age- and lifestyle-matched unexposed referent subjects (n=40/group; 

20 smokers, 20 nonsmokers).  Average tetrachloroethylene exposure levels of <140 ppm were estimated 

from five vapor concentration measurements obtained by sampling various sites in each shop; details of 

the sampling and analysis methods were not provided. Blood tetrachloroethylene levels in nonsmoking 

unexposed subjects, smoking unexposed subjects, nonsmoking workers, and smoking workers were 

measured to be 0.11, 0.11, 1,681, and 1,695 µg/L, respectively.  Serum and cellular IL-4 levels and serum 

IgE levels were significantly increased in both smoking and nonsmoking workers, compared to their 

respective referent groups. No significant change was found in serum or cellular IFN-γ levels or serum 

IgA, IgM, or IgG levels.  In a study examining a wide variety of VOCs, Lehmann et al. (2002) reported 

decreased percentages of IFN-γ-producing T cells in the umbilical cord blood of infants (total n=85) from 

homes with higher levels of tetrachloroethylene (>7.3 μg/m3 or 0.001 ppm, the 75th percentile 

concentration) compared with infants from homes with lower levels (less than the 75th percentile); the 

odds ratio (OR; adjusted for family atopy history, gender, and maternal smoking during pregnancy) for 

reduced percentage of IFN-γ-producing T cells was 2.9 (95% CI 1.0–8.6). In addition, the crude data on 

percentages of cytokine-producing T cells suggested decreases in TNF-α- and IL-2-producing cells 

associated with exposure to tetrachloroethylene at concentrations above the 75th percentile. Levels of 

28 VOCs in the homes were measured by continuous passive air sampling during 4 weeks after birth. 

This study is limited by the fact that exposure measurements occurred after the measurement of outcome 

(cord blood cytokine-producing T-cells), and indoor levels of tetrachloroethylene likely vary over time 

based on the presence or absence of recently dry-cleaned materials in the home.  In addition, the analyses 

did not account for potential confounding by coexposure to other VOCs. Thus, the association between 

indoor tetrachloroethylene and cytokine-producing T-cells in neonates is uncertain. 

The limited available epidemiological studies investigating allergic sensitization and asthma have not 

observed a clear role for tetrachloroethylene exposure in the development of these conditions, but a case 

report of hypersensitivity pneumonitis provides some support.  Lehmann et al. (2001) measured indoor 

concentrations of several VOCs in the bedrooms of 3-year-old children and assessed their association 

with serum IgE antibodies to food, indoor, and outdoor allergens.  The 25th, 50th, and 75th percentile 

concentrations of tetrachloroethylene were 0.87, 2.54, and 5.09 μg/m3, respectively.  While there were 

significant associations between some VOCs and sensitization to food allergens (eggs or milk), there was 

not a significant association between indoor tetrachloroethylene levels and food allergies. Further, there 
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was no evidence for increased indoor (e.g., pet) or outdoor (e.g., pollen) allergen sensitization with higher 

levels of any VOC (Lehmann et al. 2001).  In a small group of Hispanic children with asthma in Los 

Angeles, the daily severity of asthma symptoms was not correlated with the current ambient air levels of 

tetrachloroethylene or the amount of tetrachloroethylene in expired air (Delfino et al. 2003); limitations of 

this study include small sample size and lack of full participation at each measurement timepoint. A case 

report of hypersensitivity pneumonitis attributed the condition to tetrachloroethylene exposure; the 

woman worked at a dry cleaner (Tanios et al. 2004, see also Section 3.2.1.2).  Other potential causes and 

diagnoses were ruled out by CT of her chest, blood chemistry, and analysis of bronchoalveolar lavage. 

Andrys et al. (1997) reported statistically significant alterations in a number of blood immunological 

parameters when 21 dry cleaning workers were compared with measurements from a referent group of 

16 “administrators” or when compared with laboratory reference values (LRVs). However, all of the 

measurements from the exposed group were within the normal range of the LRVs, and multiple 

parameters from the control group were outside the normal range of the LRVs, limiting the conclusions 

that can be drawn from the findings.  When a small group of highly exposed subjects (n=6) were analyzed 

separately and the results were compared with LRVs, significant increases in total leucocyte numbers, 

lysozymes, circulating immunocomplexes, number of phagocytosing cells in peripheral blood, 

α2-macroglobulin levels, and C4 complement components were noted, as were decreased prealbumin 

concentrations. However, the small number of highly exposed subjects limits the interpretation of these 

findings. 

A 4-week rat study of immunotoxicity (Boverhof et al. 2012) observed no evidence for effects on a wide 

range of immune system end points. No changes in white blood cell counts; the number of cells, protein 

levels, or amount of lactate dehydrogenase in the bronchoalveolar lavage fluid; the phagocytic activity of 

pulmonary alveolar macrophages; the splenic antibody forming cell (AFC) response to sheep red blood 

cells (SRBCs); or weights or histopathology of immune system organs (spleen or thymus) were observed 

in female Sprague-Dawley rats exposed to tetrachloroethylene vapors at 0, 100, 300, or 1,000 ppm, 

6 hours/day, 5 days/week for 4 weeks (Boverhof et al. 2012). 

In a mouse study (see the discussion of respiratory effects in Section 3.2.1.2), there was increased host 

susceptibility to pulmonary bacterial infection after a 3-hour inhalation exposure to 50 ppm 

tetrachloroethylene (Aranyi et al. 1986). The specific mechanism of the increased susceptibility is 

unknown.  The significance of the study is unclear because of variability in control group mortality and 

lack of evaluation of specific immunological end points. 
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A chronic study of rats exposed to tetrachloroethylene for 104 weeks (JISA 1993) observed no changes in 

spleen weight or histopathology of thymus or lymph nodes at concentrations up to 600 ppm; increased 

incidences of mononuclear leukemia of the spleen were noted (see Section 3.2.1.7). The study authors 

reported that male mice, but not female mice exposed to 250 ppm tetrachloroethylene for 104 weeks 

exhibited increased absolute and relative spleen weight (data were not shown; JISA 1993). No 

histopathology changes of the spleen, thymus, or lymph nodes were reported. 

3.2.1.4  Neurological Effects 

Neurological Effects in Humans. The nervous system is a major target organ in humans exposed to 

tetrachloroethylene by inhalation.  Acute exposure, depending on concentration, can result in 

electrophysiological changes, reversible mood and behavioral changes, impairment of coordination, or 

anesthetic effects. Studies in humans exposed for years in occupational or residential settings have 

suggested effects on color vision and visual contrast sensitivity, as well as additional neurobehavioral 

effects.  There are no studies of humans exposed to tetrachloroethylene for intermediate durations of time. 

Acute-Duration Neurological Effects in Humans. Volunteers exposed to tetrachloroethylene for short 

periods of time have reported symptoms of lightheadedness, dizziness, and loss of coordination at 

concentrations between 100 and 300 ppm for <2 hours or 600 ppm for 10 minutes (Carpenter 1937; Rowe 

et al. 1952; Stewart et al. 1961b).  Symptoms of neurological impairment were not reported after exposure 

to 106 ppm for 1 hour (Rowe et al. 1952).  Slight lightheadedness was reported by six male volunteers 

exposed to tetrachloroethylene at a concentration of 210–240 ppm for over 30 minutes (Stewart et al. 

1961b). Symptoms of dizziness and drowsiness were reported at exposure to 216 ppm for 45 minutes to 

2 hours; loss of motor coordination occurred at exposure to 280 ppm for 2 hours or 600 ppm for 

10 minutes (Rowe et al. 1952).  In an older study, mood changes, slight ataxia, faintness, and dizziness 

occurred with exposure to concentrations of 1,000–1,500 ppm for <2 hours (Carpenter 1937).  With 

exposure to 2,000 ppm for 5–7 minutes, subjects experienced a sensation of impending collapse 

(Carpenter 1937).  Dizziness has also been reported after brief accidental exposure to high concentrations 

of tetrachloroethylene fumes (Saland 1967), while longer exposures resulted in collapse, coma, and 

seizures (Hake and Stewart 1977; Morgan 1969; Patel et al. 1973; Stewart 1969; Stewart et al. 1961a). 

In contrast to the lack of symptoms reported in humans exposed to 106 ppm for 1 hour (Rowe et al. 

1952), exposure to 100 ppm for 7 hours produced symptoms such as headache, dizziness, difficulty in 
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speaking, and sleepiness (Stewart et al. 1970).  Of five objective tests of central nervous system 

performance in humans exposed to 100 ppm for 7 hours/day on 5 consecutive days, none showed any 

abnormality except the Romberg test of balance, which was abnormal for three of the five subjects; no 

control subjects were included in this study (Stewart et al. 1970). Hake and Stewart (1977) reported 

impaired coordination, as measured by the Flanagan coordination test, at some time points during 

exposure of four male volunteers to 100 or 150 ppm tetrachloroethylene for 7.5 hours/day for 5 days. 

Electrophysiological changes, including EEG alterations and changes in visual-evoked potentials, have 

been noted in studies of volunteers exposed for up to 5 days to tetrachloroethylene concentrations in the 

range of 50–100 ppm.  EEGs of volunteers exposed to tetrachloroethylene show evidence of central 

nervous system depression at concentrations of ≥100 ppm.  Subjective evaluation of electroencephalo-

graphic scores suggested cortical depression in male volunteers exposed to 100 ppm for 7.5 hours/day for 

5 days, but not when the same individuals were exposed to 20 ppm (Hake and Stewart 1977).  In a later 

investigation a larger group of 19 volunteers (10 males and 9 females) was exposed 5 days/week to 

tetrachloroethylene vapor concentrations of 0, 20, 100, or 150 ppm for 1, 3, or 7.5 hours/day (subjects 

were exposed to each concentration for 1 week) (Stewart et al. 1981). Major changes were observed in 

the EEG of three of four male subjects and four of five female subjects after exposure to 100 ppm.  In the 

majority of subjects, the EEG changes were characterized by a reduction in overall wave amplitude and 

frequency, most strikingly evident in the occipital leads; the EEG alterations were similar to those seen in 

healthy adults during drowsiness, light sleep, and the first stages of anesthesia (Stewart et al. 1981).  

Altmann et al. (1990) found a statistically significant (p<0.05) increase in latency of pattern reversal 

visual-evoked potentials in 10 male volunteers exposed to tetrachloroethylene at 50 ppm for 4 hours/day 

for 4 days, relative to 12 subjects exposed at 10 ppm.  No effects on brainstem auditory-evoked potentials 

were noted.  A second study completed by Altmann et al. (1992) confirmed the effect on pattern reversal 

visual-evoked potentials at 50 ppm and the lack of effect on brainstem auditory-evoked potentials when 

16 male volunteers were exposed 4 hours/day for 4 days and compared with a group exposed to 10 ppm.  

No effects on flash visual-evoked responses were noted in male volunteers exposed for 5 days, 

7.5 hours/day to concentrations up to 150 ppm tetrachloroethylene (Hake and Stewart 1977). The lack of 

effect on flash visual-evoked potentials in the Hake and Stewart (1977) study may reflect the greater 

inter- and intrasubject variability of waveforms for flash visual-evoked potentials (Otto et al. 1988). 

Altmann et al. (1992) completed a battery of neurological tests including finger tapping; eye-hand 

coordination using a sine wave tracking task; simple reaction time; continuous performance test; symbol-
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digit test; visual retention; pattern recognition; digit learning; paired associates learning and retention; 

vocabulary test; and mood scales.  Analysis of covariance, with preexposure baseline values as covariates, 

revealed significant performance deficits for vigilance (p=0.04) and eye-hand coordination (p=0.05) at 

50 ppm.  A borderline (p=0.09) effect on simple reaction times was also noted at 50 ppm.  No effects on 

math skills, time discrimination, or reaction times were noted in male volunteers exposed for 5 days, 

7.5 hours/day to concentrations up to 150 ppm tetrachloroethylene (Hake and Stewart 1977). 

A case report described the acute onset of optic neuritis in a 57-year-old female dry cleaner (Onofrj et al. 

1999).  Symptoms of headache, retroorbital pain, and loss of vision other than light perception occurred 

after the subject had spent 9 hours ironing freshly dry-cleaned clothes and fabrics.  Her visual field was 

markedly restricted, consisting of a “tunnel vision” effect that persisted during the 1 year follow-up time.  

While ambient measurements of tetrachloroethylene had been within exposure limits (25–50 ppm) when 

tested biannually, testing conducted to simulate the conditions that she experienced while ironing revealed 

concentrations as high as 64 and 252 ppm near the newly cleaned fabrics and in the steam from the iron 

(respectively), suggesting that her exposure prior to the incident may have been much higher.  Other 

potential causes of optic neuritis were ruled out, and blood samples collected 2 days after symptom onset 

showed 1.08 mg/g tetrachloroethylene, leading the authors to suggest exposure as the cause of the optic 

neuritis (Onofrj et al. 1999).  While the subject of this case report was employed in dry cleaning and was 

thus likely exposed to tetrachloroethylene for a number of years, it appears that the acute, high 

concentration exposure may have triggered the optic neuritis. 

Intermediate-Duration Neurological Effects in Humans. There are no studies of neurological effects in 

humans exposed for intermediate durations. 

Chronic-Duration Neurological Effects in Humans.  Studies in dry cleaners suggest that chronic exposure 

to tetrachloroethylene may result in neurological symptoms and effects on memory, concentration, and 

reaction time that could persist after cessation of exposure.  In a study of 26 dry cleaning workers 

(primarily women) in Belgium exposed to a TWA concentration of 21 ppm tetrachloroethylene over an 

average of 6 years, no significant alterations were detected in the overall prevalence of neurological 

symptoms or in tests of psychomotor performance compared to 33 unexposed controls (Lauwerys et al. 

1983).  However, 17 of 22 subjective neurologic symptoms were more prevalent in the exposed group, 

particularly memory loss (7/26 versus 3/33 controls) and difficulty in falling asleep (11/26 versus 6/33 

controls).  Exposure assessment included measurement of urinary trichloroacetic acid daily for 1 week, 

measurement of air tetrachloroethylene concentrations with personal air samplers and badges, and 
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measurement of breath and blood concentrations of tetrachloroethylene.  Cai et al. (1991) also reported an 

increase in subjective symptoms including dizziness and forgetfulness in workers exposed to 

tetrachloroethylene at a geometric mean concentration of 20 ppm for 1–120 months relative to unexposed 

controls.  Gregersen (1988) observed persistent symptoms of memory loss and poor concentration among 

workers who had been free of organic solvent exposure for 6.6 years; however, this study combined 

workers with exposure to tetrachloroethylene with those exposed to other solvents, so it is not clear 

whether the persistent changes are attributable to tetrachloroethylene exposure. 

Chronic-duration effects on neurobehavioral function: Three studies examining neurobehavioral 

function in dry cleaning workers (Echeverria et al. 1995; Seeber 1989) or people residing above or near 

dry cleaning facilities (Altmann et al. 1995) showed impairments in tasks associated with memory, 

attention, and reaction time. These studies have suggested a possible effect of chronic tetrachloroethylene 

exposure on the functioning of the frontal lobes (mediating complex organizational behavior, attention 

executive functioning, and reasoning) and the limbic system (mediating mood and memory).  Benignus et 

al. (2009) reported a meta-analysis of these three studies, and observed a higher magnitude of effect 

(normalized across the three studies and tests applied) with the lower estimated cumulative exposure in 

the residential study than with the higher occupational exposures.  The authors postulated a series of 

potential explanations for this finding, including the possibility that the findings of low-level residential 

effects were related to an effect of acute exposure (e.g., resulting from the exposure in the home during 

the day(s) prior to testing), which may not have existed in occupational groups tested after several hours 

or up to 2 days without exposure.  Other possible explanations suggested by the authors included: (1) the 

potential greater susceptibility of residents compared with workers, due to the “healthy-worker” effect or 

due to differences in age or gender between the two populations; and (2) differences in exposure scenario 

(i.e., residents are exposed to lower concentrations but more continuously and over longer periods than 

workers, and workers’ time away from work provides greater opportunity for elimination of 

tetrachloroethylene from the body). 

In a study of 65 dry cleaning workers exposed to tetrachloroethylene for at least 1 year, behavioral tests 

that measured short-term memory for visual designs showed deficits in the high-exposure group 

(40.8 ppm) relative to the low-exposure group (11.2 ppm) (Echeverria et al. 1995).  Exposure was 

assessed by a breath sample, and by 15-minute air samples from the breathing zone of a clerk, a pressor, 

and an operator in 19 of the 23 shops studied; exposure groups (low, medium, and high) were then created 

based on work history. These authors (Echeverria et al. 1995) also described four cases referred for 

neuropsychologic assessment of possible tetrachloroethylene encephalopathy. The subjects performed 
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below expectation on tasks assessing memory, motor, visuospatial, and executive functions, with milder 

attentional deficits. 

Dry cleaning workers exposed to a TWA concentration of 12 or 54 ppm tetrachloroethylene had 

significantly impaired perceptual function, attention, and intellectual function compared to a control 

population when evaluated by a battery of psychological tests and questionnaires (Seeber 1989).  The 

workers were exposed on average 12 and 11 years in the low- and high-exposure groups, respectively (as 

reported by U.S. EPA 2012a).  The study showed statistically significant differences, indicative of 

impairment, between exposed and control groups in test scores for neurological signs, emotional lability, 

perceptual speed, delayed reactions, digit reproduction, cancellation d2 (fault corrected performance), and 

digit symbol, after controlling for gender, age, and intelligence.  Among these tests, only scores for 

perceptual speed, delayed reactions, and digit reproduction exhibited monotonic dose-response 

relationships; for the other tests, the scores were worse in the low exposure group than in the high-

exposure group (Seeber 1989). Compared to 30 unexposed women, significantly prolonged reaction 

times (simple reaction times, p<0.0001; shape comparison to test vigilance and to test stress, p<0.005) 

were reported in 60 women occupationally exposed to tetrachloroethylene at a median concentration of 

15 ppm for an average of 10 years (Ferroni et al. 1992).  Exposure levels were determined by measuring 

tetrachloroethylene in the blood collected during the workday and in air samples collected during 4-hour 

periods in the workweek.  The sampling was completed during the winter and summer to account for 

seasonable variability.  No significant association between measures of exposure and neurobehavioral 

tests was noted.  

In a study comparing 14 persons living above or next to dry cleaning facilities for 1–30 years with 

23 controls with no history of solvent exposure, no significant differences were observed in the absolute 

values of tests of a neurological battery (pattern reversal visual-evoked potentials continuous performance 

test, hand-eye coordination, finger tapping, simple reaction time, visual memory) (Altmann et al. 1995). 

However, when analyzed using multivariate analysis to adjust for age, gender, and education, response 

time in the continuous performance test and simple reaction time were increased (p<0.05), and a smaller 

number of stimuli were identified correctly by the exposed subjects (p<0.05) relative to 23 controls.  The 

median concentrations of tetrachloroethylene were 0.2 and 0.003 ppm in the apartments of exposed and 

control subjects, respectively; blood concentrations measured in the examination room (not in the 

apartments) were 17.8±46.9 μg/L (mean±standard deviation) in exposed subjects and below the 0.5 μg/L 

detection limit in controls. 
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Chronic-duration effects on vision: Chronic tetrachloroethylene exposure may alter specific types of 

vision functions, including color discrimination and contrast sensitivity; however, the available data 

include some conflicting findings.  

No effect on blue-yellow color vision (assessed using Lanthony’s new color and Ishihara’s color vision 

tests) was noted in 30 men or 34 women occupationally exposed to tetrachloroethylene at average 

concentrations of 15.3 and 10.7 ppm, respectively (Nakatsuka et al. 1992).  The average duration of 

exposure for these subjects was not stated; in addition, details of the sampling for tetrachloroethylene 

concentrations were not provided.  

When compared to 35 unexposed controls (matched for sex, age, alcohol consumption, and cigarette use), 

22 dry cleaners exposed to an average concentration of 7.3 ppm tetrachloroethylene for an average of 

106 months showed a significant decrease (p=0.007) in color vision, primarily in the blue-yellow range, 

as measured by the Lanthony D-15 desaturated panel (Cavalleri et al. 1994).  Reexamination of the 

workers 2 years later showed that those workers whose exposure to tetrachloroethylene had increased 

(n=19, median exposure increasing from 1.7 to 4.3 ppm based on 4-hour TWA concentration 

measurements) experienced further decrements in color vision, while those whose exposure had 

decreased experienced no changes in color vision (n=14, median exposure decreasing from 2.9 to 

0.7 ppm); two workers had retired and were not reexamined (Gobba et al. 1998). CCI, again measured 

using the Lanthony D-15 panel, was increased from 1.16 to 1.26 in the group with increased 

tetrachloroethylene exposure (p<0.01).  In both the initial and follow-up studies, the exposure 

concentrations were measured on a single day; thus, it is not clear how well they represent long-term 

exposure.  Gobba et al. (1998) noted that the Lanthony D-15 panel is a more sensitive test for early color 

vision loss than the tests used by Nakatsuka et al. (1992), and that the increased sensitivity might be one 

reason for the conflicting results obtained by Cavalleri et al. (1994) and Gobba et al. (1998) compared 

with Nakatsuka et al. (1992).  Color discrimination (measured by Lanthony D-15 test) was not 

significantly affected in 4 children or 13 adults exposed to concentrations up to 0.3 ppm tetrachloro-

ethylene for an average of 4–5 years; exposure resulted from living in residential buildings that also 

housed dry cleaning facilities (Schreiber et al. 2002). The mean color confusion index score of the 

exposed persons (1.33) was higher than that of age- and sex-matched controls (1.20), but the difference 

was not statistically significant by two-tailed matched-pair analysis (Schreiber et al. 2002). 

Other studies that did not quantify exposure to tetrachloroethylene provide some support for effects on 

color vision.  A study of 14 dry cleaning workers (7 men and 7 women) also observed poorer color 
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discrimination, primarily in the blue-yellow range, when compared with two referent groups (n=27 and 

29) consisting of support staff of the investigating university (Sharanjeet-Kaur et al. 2004).  Testing using 

the D-15 and Farnsworth Munsell 100 Hue tests indicated abnormal performance (based on criteria 

published by Vingrys and King-Smith 1988) among 43 or 93% (respectively) of dry cleaners, compared 

with 0% of each of the referent groups (statistical analysis was not performed). The authors suggested 

that the FM 100 Hue test was a more sensitive test for acquired color vision deficits (Sharanjeet-Kaur et 

al. 2004).  The study is limited by the lack of matching in selection of the referent population and lack of 

control for potential confounders including age and smoking status.  Till et al. (2003) compared the color 

vision and contrast sensitivity in a 30-month-old child whose mother worked as a dry cleaner prior to and 

during pregnancy with similar test results from three unexposed 2-year-old children.  The exposed child 

exhibited severe red-green color vision deficit, and mild to moderate impairment of blue-yellow color 

vision (Till et al. 2003). Due to the age and limited language abilities of the children, testing was 

accomplished by measurement of transient and sweep visual-evoked potentials. Valic et al. (1997) 

examined color confusion in 138 individuals who reported exposure to solvents compared with 

100 controls.  The subjects included 31 individuals who reported exposure to trichloroethylene or 

tetrachloroethylene for an average of 5 years; urine levels of trichloroacetic acid were measured to 

validate exposure.  Among those exposed to tri- or tetrachloroethylene in combination with ≥250 g of 

alcohol per week, the CCI (assessed by Lanthony D-15 test) was higher (1.80) than in those subjects 

whose alcohol intake was similar but who were not exposed to the chlorinated solvents.  Among those 

without alcohol intake, exposure did not affect CCI.  Urinary trichloroacetic acid levels were not 

correlated with CCI (Valic et al. 1997).  

Tetrachloroethylene exposure may also alter visual contrast sensitivity. In one volunteer study that 

evaluated this end point, tests of visual contrast measured in a few individuals showed a tendency for loss 

of contrast in the low and intermediate spatial frequencies after exposure to 50 ppm on 4 hours/day for 

4 days (Altmann et al. 1990).  Two epidemiological studies of exposure to tetrachloroethylene from living 

or working in buildings that also housed dry cleaners (Schreiber et al. 2002; Storm et al. 2011) suggested 

that exposure to concentrations of 0.1–0.3 ppm could alter visual contrast sensitivity in adults, and that 

this end point might be affected at lower concentrations in children.  Schreiber et al. (2002) evaluated a 

group of residents (n=17) and a group of daycare workers (n=9), each of whom was exposed to 

tetrachloroethylene for an average of 4 or 5.8 years (respectively) originating from a dry cleaner that was 

colocated with the residence or daycare. Visual acuity, color discrimination, and contrast sensitivity were 

assessed in these groups and in age- and sex-matched controls without exposure.  Ambient and personal 

air monitoring results suggested mean concentrations of about 0.11 ppm among the residents and about 
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0.3 ppm among the daycare workers.  In both groups, significant (p<0.001) decreases in visual contrast 

sensitivity were observed when compared with the unexposed referent groups. Storm et al. (2011) 

recruited adults and children living in New York City buildings with or without colocated dry cleaners for 

a larger study of visual acuity and contrast sensitivity. The exposed subjects were stratified into low and 

high exposure (<100 or >100 μg/m3 tetrachloroethylene) based on 24-hour air samples; exhaled air and 

blood were also analyzed for tetrachloroethylene.  Geometric mean indoor air concentrations of 0.00046, 

0.0018, or 0.050 ppm tetrachloroethylene were reported for the referent, low, and high exposure groups of 

children (n=56, 39, and 11, respectively); for adult participants, the concentrations were 0.00043, 0.0017, 

or 0.070 ppm (n=49, 43, and 12, respectively). In children, a higher concentration of tetrachloroethylene 

in indoor air was associated with a higher odds of achieving less than the maximum score (in the poorer 

performing eye) at a spatial frequency of 12 cycles per degree of visual arc; the effect remained after 

adjustment for race, ethnicity, and age (adjusted OR 2.64; 95% CI 1.41–5.52).  Visual contrast sensitivity 

of adults was not associated with measures of tetrachloroethylene exposure. A 30-month-old child whose 

mother worked as a dry cleaner prior to and during pregnancy exhibited decreased contrast sensitivity in 

the low and intermediate spatial frequency ranges (measured by transient and sweep visual-evoked 

potentials), when compared with three unexposed 2-year-old children (Till et al. 2003).  

Chronic-duration effects on risk of neurological disease: A study of 99 twin pairs (including 49 identical 

and 50 fraternal pairs) was conducted to evaluate the association between exposure to solvents and 

Parkinson’s disease risk (Goldman et al. 2012).  The twin pairs, from the World War II Veteran Twins 

Cohort, were discordant for Parkinson’s disease (one twin had the disease and one did not).  The twins 

completed detailed questionnaires regarding occupational tasks and hobbies, and their exposure to six 

solvents was estimated from their answers by experts blinded to disease status. Among those ever 

exposed to tetrachloroethylene, a borderline significant (p=0.053) increase in the risk of Parkinson’s 

disease (OR 10.5; 95% CI 0.97–113) was observed. Adjustment for exposure to any other solvent and 

other potential confounders (head injury, smoking, and zygosity) resulted in minimal change in the OR. 

Additional studies examining the potential relationship between tetrachloroethylene exposure and 

Parkinson’s disease, especially studies with direct and quantitative measures of exposure, are needed 

before a conclusion can be drawn. 

Perrin et al. (2007) observed a significant increase in the risk for developing schizophrenia among 

offspring of parents who worked as dry cleaners in Jerusalem.  The study group consisted of a population-

based cohort of individuals born between 1964 and 1976 (the Jerusalem Perinatal Study).  The study 

collected data on demographics and occupation from birth certificates; these data were then linked to 
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Israel’s national Psychiatric Registry to identify schizophrenia patients.  Proportional hazards assessment 

was used to evaluate the risk of schizophrenia among the 88,829 live offspring followed to 1998.  Of 

144 offspring of parents employed in dry cleaning, 4 cases of schizophrenia were observed. The relative 

risk of developing schizophrenia was 3.4 (95% CI 1.3–9.2; p=0.01); this risk was minimally altered when 

a number of variables, including paternal age, were included in the model. No measure of exposure was 

included in this analysis.  Because information relating schizophrenia risk to tetrachloroethylene exposure 

is limited to one study with a small number of patients and a surrogate measure of exposure, additional 

studies are needed to clarify the association, if any, with tetrachloroethylene exposure.  

In a case-control study of autism spectrum disorders (ASDs) in California, no association was found 

between developmental exposure to tetrachloroethylene and diagnosis of ASD in children born in 1994 

(Windham et al. 2006).  Exposure was estimated using the U.S. EPA annual average Hazardous Air 

Pollutant (HAP) concentration estimates from 1996. Limitations of this study include use of estimated 

exposures, lack of addresses during the first trimester of pregnancy, and lack of control for other sources 

of exposure (e.g., occupational) and confounding variables (e.g., smoking). As with the single studies of 

Parkinson’s disease and schizophrenia, more information is needed to assess the relationship between 

tetrachloroethylene exposure and autism spectrum disorders. 

Neurological Effects in Animals. Neurological effects of tetrachloroethylene exposure in laboratory 

rodents are qualitatively similar to those seen in human studies.  Mice and rats have exhibited anesthetic 

effects after exposure to high concentrations, while lower concentrations have resulted in effects on 

visual-evoked potentials, EEG patterns, and neurobehavioral tests of attention, as discussed below. 

Neurological signs typical of an anesthetic effect of inhaled tetrachloroethylene have been reported in 

numerous animal studies of acute exposure durations (see Table 3-1). These clinical signs consist of 

hyperactivity (excitability), ataxia, hypoactivity, and finally loss of consciousness (Friberg et al. 1953; 

NTP 1986; Rowe et al. 1952).  Rats exposed to 3,000 ppm tetrachloroethylene became anesthetized in 

several hours, while those exposed to 6,000 ppm were anesthetized in minutes (Rowe et al. 1952).  

Anesthesia was observed in mice within 2.5 minutes of breathing air containing 6,800 ppm tetrachloro-

ethylene (Friberg et al. 1953).  Dogs exposed to 5,000 ppm tetrachloroethylene by face mask for 

10 minutes became excited and struggled (Reinhardt et al. 1973); this response may have represented 

respiratory irritant effects of tetrachloroethylene. Mice inhaling tetrachloroethylene for 4 hours showed 

signs of anesthesia at a concentration of 2,328 ppm (NTP 1986).  Rats became ataxic following exposure 

to 2,300 ppm for 4 hours (Goldberg et al. 1964).  Dyspnea, hypoactivity, hyperactivity, anesthesia, and 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

       

    

 

   

      

   

   

 

  

   

     

    

     

   

     

 

 

 

      

     

   

 

       

   

    

  

 

   

   

   

      

      

   

83 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

ataxia were noted in mice and rats exposed to 1,750 ppm on 6 hours/day, 5 days/week for 2 weeks; these 

effects were not seen at lower concentrations (up to 875 ppm) (NTP 1986). 

Acute exposures also demonstrated effects of tetrachloroethylene on visual and/or somatosensory-evoked 

potentials, as well as EEG changes, in rats. Male Long-Evans rats exposed for 1.5 hours to 

concentrations of 250, 500, or 1,000 ppm exhibited reduced amplitude of visual-evoked potentials at all 

exposure concentrations (Boyes et al. 2009).  Albee et al. (1991) reported electrophysiological changes 

including altered shape, reduced amplitude, and decreased latency of flash-evoked potentials; decreased 

latency of somatosensory-evoked potentials; and EEG changes in male rats exposed to tetrachloro-

ethylene at 800 ppm 4 hours/day for 4 days.  Similar findings were observed when male F344 rats were 

exposed 6 hours/day for 4 days to 800 ppm tetrachloroethylene as a pilot study in preparation for a 

subchronic study (Mattsson et al. 1998).  Alterations in flash-evoked potentials recorded in the visual 

cortex were observed at 800 ppm, but not at lower exposure concentrations; cerebellar flash-evoked 

potentials were not affected by treatment.  No treatment-related changes in auditory brainstem responses 

to clicks and tone pips, somatosensory-evoked potentials, or caudal nerve action potentials were observed, 

and grip strength was not affected by exposure (Mattsson et al. 1998).  

Behavioral alteration has been observed in rodents after acute inhalation exposure to tetrachloroethylene.  

Impairment of sustained attention was observed in male Long-Evans rats exposed for one hour to 

concentrations of ≥500 ppm tetrachloroethylene (Oshiro et al. 2008).  The degree of impairment increased 

with duration of exposure (tests of sustained attention were administered at 12-minute intervals during 

exposure.  Open-field behavior (ambulation) was elevated in groups of 10 male rats exposed to 200 ppm 

tetrachloroethylene of unspecified purity for 6 hours/day for 4 days (Savolainen et al. 1977).  Ambulation 

was significantly increased 1 hour, but not 17 hours, after the last exposure. Biochemical changes in the 

brains following several additional exposures were reduced ribonucleic acid (RNA) content and increased 

nonspecific cholinesterase content. There was no histologic examination of brain tissue, so these findings 

could not be correlated with brain structural damage. 

Intermediate-Duration Neurological Effects in Animals. A 13-week study in which rats were exposed to 

50, 200, or 800 ppm tetrachloroethylene (6 hours/day, 5 days/week) reported no effect on gait, posture, 

muscle tone, sensory response, or hind and forelimb grip performance (Mattsson et al. 1992, 1998).  At 

800 ppm, minimal changes were noted in flash-evoked potentials measured 1 week after the last 

exposure. The investigators considered the effect nonadverse and indicated that changes in flash-evoked 

potential can occur in rats exposed to enriched environment (paired housing, access to an exercise wheel, 
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and handling twice a day by study personnel).  Histological changes were not observed in the optic tract, 

brain, spinal cord, or peripheral nerves.  According to the investigators, this study indicates that 

intermediate-duration exposure of rats to tetrachloroethylene at 800 ppm does not cause serious 

permanent damage and suggests that if minor acute changes in flash-evoked potentials are prevented, 

more serious neurological effects will not occur.  However, it is not possible to draw a conclusion on the 

reversibility of the effects without data on the post-exposure time course of these effects. 

A multigeneration study in rats suggests that animals may adapt to some of the neurological effects of 

tetrachloroethylene.  Exposure at 1,000 ppm, 6 hours/day, 5 days/week for 11–19 weeks resulted in 

decreased activity, reduced response to sound, salivation, breathing irregularities, and piloerection 

(Tinston 1995).  The effects were observed only during the first 2 weeks in each generation, and recovery 

from these effects was noted about 30 minutes before the end of each exposure. 

Biochemical changes were reported in brains of rats and Mongolian gerbils exposed by inhalation to 

tetrachloroethylene.  Gerbils exposed to 320 ppm continuously for 3 months followed by a 4-month 

exposure-free period had changes in levels of S-100 protein, a marker for astrocytes as well as other cells 

in the peripheral nervous system and skin (Rosengren et al. 1986).  Rats exposed to 320 ppm continuously 

for 30 days had changes in brain cholesterol, lipids, and polyunsaturated fatty acids (Kyrklund et al. 

1988).  Changes in the fatty acid composition of the brain were also observed in rats continuously 

exposed to tetrachloroethylene at 320 ppm for 90 days (Kyrklund et al. 1990).  Gerbils exposed to 60 or 

320 ppm had decreased deoxyribonucleic acid (DNA) content in portions of the cerebrum (Karlsson et al. 

1987; Rosengren et al. 1986).  Gerbils exposed to 120 ppm continuously for 12 months had altered 

phospholipid content (phosphatidylethanolamine) in the cerebral cortex and hippocampus (Kyrklund et al. 

1984).  In another study, gerbils with a similar exposure regimen had decreased taurine content and 

increased glutamine content in areas of subcortical brain tissue (Briving et al. 1986).  These studies are 

limited by failure to examine nervous tissue histologically in order to correlate biochemical changes with 

behavioral alterations or with morphologic evidence of brain damage.  In addition, all but the Rosengren 

et al. (1986) study involved exposure to only one concentration of tetrachloroethylene. 

In a study designed to examine tetrachloroethylene effects on different regions and different cell types of 

the brain, Wang et al. (1993) measured brain weight and neuronal and glial markers in rats exposed 

continuously at 300 or 600 ppm for 4 or 12 weeks.  Brain weight was significantly reduced at 600 ppm 

following both 4 and 12 weeks of exposure.  Measurement of neuron-specific enolase, a cytosolic 

neuronal protein in the frontal cerebral cortex, hippocampus, and brainstem did not show any changes.  
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The cytosolic marker of glial cells, glial S-100, was significantly reduced in all three brain regions 

following exposure at 600 ppm for 12 weeks, with the greatest reduction observed in the frontal cerebral 

cortex.  Cytoskeletal elements of neuronal cells (neurofilament 68 kD polypeptide) and glial cells (glial 

fibrillary acid protein) were significantly reduced in the frontal cerebral cortex at 600 ppm.  The neuronal 

marker was reduced at both 4 and 12 weeks, while the glial marker was reduced only at 12 weeks.  In the 

hippocampus and brainstem, only the glial cytoskeleton protein was significantly reduced following 

12 weeks of exposure at 600 ppm.  The investigators (Wang et al. 1993) concluded that the frontal 

cerebral cortex is more sensitive to tetrachloroethylene than other regions of the brain, that cytoskeletal 

elements are more sensitive than cytosolic proteins, and that in addition to neural cells, glial cells are 

vulnerable to the effects of tetrachloroethylene. 

Chronic-Duration Neurological Effects in Animals. Histologic lesions in the central and peripheral 

nervous systems have not been observed in chronic inhalation studies in rats and mice (JISA 1993; NTP 

1986). 

The highest NOAEL values and all reliable LOAEL values for neurological effects in each species and 

duration category are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.5  Reproductive Effects 

Reproductive Effects in Humans. Some adverse reproductive effects in men and women have been 

reported to be associated with occupational exposure to tetrachloroethylene in dry cleaning operations.  

These effects include menstrual disorders, spontaneous abortion, sperm abnormalities, and decreased 

fertility. However, exposure in many of these studies was characterized only by occupation, 

tetrachloroethylene levels were not measured, and coexposure to other solvents could not be ruled out in 

many studies; thus, no definitive conclusions regarding the association between tetrachloroethylene 

inhalation and reproductive end points can be made based on the human data. 

In a cross-sectional study, female dry cleaning workers in the Netherlands reported more menstrual 

dysregulation, including oligomenorrhea, unusual cycle length, menorrhagia, dysmenorrhea, and 

premenstrual syndrome, than laundry workers (Zielhuis et al. 1989).  Limitations of the study are lack of 

exposure measurements, use of a self-administered questionnaire to evaluate effects, lack of follow-up, 

failure to account for various confounding factors such as smoking, alcohol consumption, and medicinal 

drugs), and a relatively small study population. 
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No evidence of a consistent effect on pregnancy outcome was observed in a nested case-control study of 

214 cases of low birth weight, congenital malformations, perinatal mortality, or spontaneous abortions 

identified in a cohort of dry cleaning workers in Scandinavia (Olsen et al. 1990). This study was limited 

by incomplete participation of all dry cleaning facilities, few controls for life-style factors, and limited 

exposure information. When analyses of subpopulations in Finland (Kyyrönen et al. 1989) and Sweden 

(Ahlborg et al. 1990) were conducted, higher odds of spontaneous abortion were reported in tetrachloro-

ethylene-exposed women from Finland, but not Sweden.  However, a small group of exposed affected 

workers was included in the Finnish population, and biological monitoring for tetrachloroethylene was 

conducted after, rather than concurrent with, the first trimester of pregnancy (Kyyrönen et al. 1989).  In 

addition, few pregnancies occurred among exposed women in the Swedish group (Ahlborg 1990).  Other 

small studies reported increased incidences of spontaneous abortions in Italian dry cleaning workers 

(Bosco et al. 1986) and Finnish laundry workers (Hemminki et al. 1980); however, only the findings from 

Hemminki et al. (1980) reached statistical significance. 

A case-control study of California women occupationally exposed to tetrachloroethylene in dry cleaning 

operations suggested that women exposed to tetrachloroethylene and/or trichloroethylene early in 

gestation had increased probability of spontaneous abortion (unadjusted OR 3.4; 95% CI 1.0–2.0; 

Windham 1991). In this study, exposure was assessed through telephone interviews; in addition, 

coexposure to other solvents, along with limited control for confounding factors, limit the reliability of 

these findings.  In a larger, retrospective study of current and past laundry (n=2,711) and dry cleaner 

workers (n=399) in the United Kingdom (Doyle et al. 1997), females who were dry cleaner operators 

during or 3 months prior to pregnancy had a higher incidence of spontaneous abortion than non-operator 

dry cleaner workers (increased ~50%), laundry workers (increased ~30%), or unexposed women (workers 

not employed in these occupations during or just prior to pregnancy; increased ~45%).  The increased risk 

for dry cleaner operators was significantly elevated compared with non-operators or unexposed women 

(Doyle et al. 1997).  In a survey of 56,012 women in Montreal, Canada, no increases in spontaneous 

abortion rates, stillbirths, birth defects, or low birth weight were observed among laundry and dry cleaner 

workers; exposure information was limited to occupation and likely included unexposed individuals 

(McDonald et al. 1986, 1987).  

In a study of semen quality among dry cleaners (n=34), the overall percentages of abnormal sperm were 

similar in the dry cleaners and 48 unexposed laundry workers (Eskenazi et al. 1991b).  However, the 

sperm cells of dry cleaners were significantly more likely to be round and less likely to be narrow. Men 
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with the highest exposure levels had sperm with less progressive linear movement and more lateral 

movement.  No effects on sperm counts were noted.  A study of the reproductive outcome of 17 of the dry 

cleaners and 32 of the laundry workers showed that there is some evidence that it may take slightly longer 

for the wives of dry cleaners to become pregnant and that they seek help for infertility problems more 

often (Eskenazi et al. 1991a).  Spontaneous abortions were not increased in wives of dry cleaners 

(Eskenazi et al. 1991a).  In 20 women occupationally exposed to unspecified concentrations of 

tetrachloroethylene, a nonsignificant increase in time-to-pregnancy was observed compared to 

92 unexposed controls (Sallmen et al. 1995).  Exposure concentrations were not provided in this study. 

In a retrospective study, time-to-pregnancy was studied in wives of men biologically monitored for 

exposure to organic solvents (trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane, styrene, 

xylene, and toluene) by the Finnish Institute of Occupational Health (Sallmén et al. 1998). Exclusion 

criteria included contraceptive failure in the study pregnancy, infertility treatments, known reproductive 

health problems, and diabetes.  Multivariate analysis study of 282 couples suggested that paternal 

exposure to organic solvents may be associated with decreased fecundability, after adjustment for age, 

age at menarche, menstrual cycle variability, frequency of intercourse, maternal and paternal smoking, 

maternal exposure to organic solvents, and year of pregnancy.  Specific data on tetrachloroethylene 

exposure were available for 17 of the exposed men.  Multivariate analysis of this subgroup also suggested 

a decrease in fecundability with paternal exposure specifically to tetrachloroethylene (adjusted 

fecundability density ratio: “low” exposure, 0.86 (95% CI 0.40–1.84); and “high” exposure, 0.68 (95% CI 

0.30–1.53).  Quantitative exposure concentrations were not reported in this study.  Other limitations 

include methodological problems (retrospective, self-administered questionnaire) and use of surrogate 

exposure data if exposure was not measured at the time the attempt at pregnancy began (data for 

individual at different time-point or data for another individual in same job at that time-point). An earlier 

case-referent study conducted by the Finnish Institute of Occupational Health reported no increase in the 

number of spontaneous abortions in wives of men occupationally exposed to tetrachloroethylene 

(Taskinen et al. 1989). This study has similar limitations to the more recent study, as well as small 

subject numbers (4 cases, 17 referents). 

Reproductive Effects in Animals. Evidence from a limited number of well-conducted reproductive 

studies in laboratory animals suggests that tetrachloroethylene is a potential female reproductive toxicant, 

resulting in decreased number of liveborn pups, increased pre- and postimplantation loss, and increased 

resorptions. While several additional studies report a lack of reproductive findings, the majority of these 

have major study limitations (e.g., single-dose exposures, nonstandard protocols, exposure only during 
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gestation). There is also limited evidence that tetrachloroethylene can damage both male and female 

gametes. 

Effects on gametes have been reported in both male and female laboratory animals in acute- and 

intermediate-duration studies.  Decreased oocyte quality was reported in female Sprague-Dawley rats 

exposed to 1,700 ppm for 2 weeks, as evidenced by significantly decreased in vitro fertilizability of 

oocytes and reduced number of penetrated sperm per oocyte (Berger and Horner 2003).  In this study, 

exposure to tetrachloroethylene did not affect the serum progesterone levels of female rats. Spermhead 

abnormalities were significantly increased in CD-1 male mice 4 and 10 weeks after a 5-day exposure to 

500 ppm tetrachloroethylene (NOAEL: 100 ppm) (NIOSH 1980).  Abnormalities were not observed 

1 week after exposure, indicating that spermatocytes and spermatogonia, rather than sperm and/or 

spermatids, are sensitive to tetrachloroethylene exposure in mice.  However, male albino [CRL:COBS CD 

(SD) BR] rats exposed at 100 or 500 ppm did not demonstrate treatment-related increases in spermhead 

abnormalities (NIOSH 1980). 

Szakmáry et al. (1997) reported adverse reproductive effects in rats and rabbits, but not mice, following 

exposure during gestation.  CFY rats were exposed to 0, 1,500, 4,500, or 8,500 mg/m3 (0, 221, 664, or 

1,254 ppm) tetrachloroethylene on gestation days 1–20.  Maternal weight gain was reduced in dams 

exposed to 664 or 1,254 ppm tetrachloroethylene (37–40% lower than controls).  Preimplantation losses 

were increased (more than double the control percentage) at these exposure levels, but there were no 

treatment-related increases in postimplantation losses or number of resorptions.  Rabbits exposed to 

4,500 mg/m3 (1,254 ppm) tetrachloroethylene on gestation days 7–20 also demonstrated a 58% reduction 

in maternal body weight gain.  Litters were aborted in two treated and one control doe; in addition, four 

treated does exhibited total fetal resorptions.  Postimplantation losses were higher in treated does 

(31% versus 11% in controls).  However, mice exposed to 1,500 mg/m3 (664 ppm) tetrachloroethylene on 

gestation days 7–15 did not demonstrate any changes in maternal body weight gain or number of post-

implantation losses or resorptions.  Additionally, several gestational studies in rats and rabbits, with and 

without pre-mating exposure, demonstrated no treatment-related effects on reproductive parameters (e.g., 

fertility index, number of live litters, pre-/postimplantation loss, number of resorptions) at concentrations 

ranging from 100 to 1,000 ppm (Carney et al.2006; NIOSH 1980; Tepe et al. 1980). 

In a multi-generation study, groups of rats were exposed to tetrachloroethylene at 0, 100, 300, or 

1,000 ppm for 6 hours/day, 5 days/week for 11 weeks before mating (Tinston 1995).  After mating, the 

males were exposed at all concentrations daily until termination, and the females were exposed at all 
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concentrations daily until gestation day 20 when they were removed from exposure.  One litter was 

produced in the first generation, and the dams and litters were exposed to all concentrations daily from 

day 6 to day 29 postpartum.  The F1 generation parents were exposed to tetrachloroethylene at 0, 100, 

300, or 1,000 ppm for at least 11 weeks before mating. Three litters were produced in the second 

generation.  Dams and F2A litters of the control and 100 ppm exposure groups were exposed daily from 

day 6 to day 29 postpartum, and dams and F2A litters of the 300 ppm exposure group were exposed daily 

from day 7 to day 29 postpartum.  Dams and F2A litters of the 1,000 ppm group were not exposed during 

lactation.  For all exposure concentrations, dams and F2B litters were not exposed during lactation.  The 

F2C litters were produced by mating unexposed females with male controls and the males exposed to 

1,000 ppm. 

Exposure at 1,000 ppm resulted in sedation of dams and pups (Tinston 1995).  Decreased body weight 

gain in the parental animals was noted at 1,000 ppm during the pre-mating and lactation periods, but was 

generally <10%. The proportion of pups born live at 1,000 ppm was significantly lower in the F1A, F2A, 

and F2B litters (first litter [A] of the F1 generation and first two litters [A and B] of the F2 generation).  

The incidence of pup mortality during lactation was also significantly increased at 1,000 ppm in the F1A, 

F2A, and F2B litters.  The effects on survival were observed with and without pup exposure suggesting 

an in utero effect rather than a direct effect of tetrachloroethylene.  Relative to controls, growth of 

offspring was reduced during lactation, with the reduction most marked at 1,000 ppm.  At the beginning 

of the pre-mating period for the F1 parents, body weights of males and females were 26 and 24% lower 

than controls, respectively.  After adjustment for initial body weights, growth of females was similar to 

controls, although growth of the 1,000 ppm males was less than controls.  Body weights of offspring in 

the 100 and 300 ppm groups were generally within 10% of control values.  In the F2C litters, there were 

no statistically significant changes in the proportion of pups born live, pup survival, or growth suggesting 

that the effects were not male mediated.  No effects on reproductive outcome were noted at 300 ppm.  

The investigators describe treatment-related chronic progressive glomerulonephropathy in the kidneys of 

adult rats at 1,000 ppm (Tinston 1995). The report indicates that other organs were removed for 

histological examination, but it is not clear if they were examined, and if they were examined, details of 

the results are not provided.  The 1,000 ppm concentration is considered a serious LOAEL for 

reproductive effects resulting in a decrease in the number of liveborn pups, and the 300 ppm 

concentration is considered a NOAEL in rats. 

Adverse effects on reproductive performance were not detected in rats exposed by inhalation to 70, 230, 

or 470 ppm tetrachloroethylene for 28 weeks, as judged by the number of pregnancies, number of litters 
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conceived, and number of offspring per litter (Carpenter 1937).  This older study has numerous 

limitations including intercurrent disease, nonstandard protocols, rats of undefined strain, and inadequate 

controls. 

The highest NOAEL values and all reliable LOAEL values for reproductive effects in each species and 

duration category are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.6  Developmental Effects 

Limited data are available on developmental effects of tetrachloroethylene in humans exposed via 

inhalation. Evidence from multiple studies in laboratory animals indicates that gestational exposure to 

tetrachloroethylene affects growth and development, but it is not overtly teratogenic.  In animals, 

developmental effects reported at concentrations as low as 300 ppm included growth retardation and 

skeletal and soft tissue anomalies, often at maternal exposure concentrations that elicited toxicity. Two 

available neurobehavior studies of rats exposed during gestation gave conflicting findings; it is not clear 

whether strain differences may have contributed to the different results. 

Forand et al. (2012) conducted a birth outcome analysis in the Endicott, New York area where residents 

may have been exposed to VOCs via soil vapor intrusion (migration of contamination through the soil 

into structures through cracks in building foundations).  Two exposure areas were identified based on 

environmental sampling data: one area was primarily contaminated with trichloroethylene (n=1,090 live 

births) and the other with tetrachloroethylene (n=350 live births). Maternal residence in the 

tetrachloroethylene-contaminated area was associated with a nonsignificant elevation in the relative risk 

for cardiac defects, compared with state-wide incidence (excluding New York City).  The incidences of 

low-birth weight, preterm birth, fetal growth restriction, and other birth defects were not elevated in this 

area.  Limitations of the study include the small number of births in the study area, lack of control for 

potential occupational exposure to tetrachloroethylene, lower socioeconomic status in the study area than 

the general comparison population, and concurrent exposure to other VOCs. None of the animal studies 

observed an association between tetrachloroethylene exposure and cardiac defects, as suggested by the 

human epidemiological study (Forand et al. 2012). 

Szakmáry et al. (1997) reported developmental effects in rats, mice, and rabbits exposed to 

tetrachloroethylene during gestation.  Pregnant CFY rats were exposed to 0, 1,500, 4,500, or 8,500 mg/m3 

(0, 221, 664, or 1,254 ppm) tetrachloroethylene on gestation days 1–20.  Fetal effects were observed at 
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the two highest concentrations, and included increased percentages of fetuses per litter with weight 

retardation, "skeletal retardation," and total malformations. Apart from noting an increased number of 

offspring with supernumerary ribs, the study authors did not detail the fetal findings.  Pregnant C57BL 

mice were exposed to 0 or 1,500 mg/m3 (664 ppm) tetrachloroethylene on gestation days 7–15.  No 

effects on litter size, numbers of dead or resorbed fetuses, fetal or placental weights, or percentages of 

fetuses with growth retardation, "skeletal retardation", or skeletal malformations were noted.  An 

increased percentage of fetuses per litter with internal organ malformations (14% versus 0.8% in controls) 

was observed, but the nature of the malformations was not reported.  Pregnant New Zealand rabbits were 

exposed to 0 or 4,500 mg/m3 (1,254 ppm) tetrachloroethylene on gestation days 7–20 of gestation.  

Postimplantation losses were higher in treated does (31% versus 11% in controls) and 4/16 treated does 

exhibited total fetal resorptions. No effects on fetal weight, skeletal development, or malformation rates 

were noted.  Fetal effects in rats and rabbits occurred at the same concentrations causing significant 

reductions (37–58%) in maternal body weight gain. Maternal weight gain was not affected in exposed 

mice. 

A slight but significant increase in maternal and fetal toxicity occurred in Sprague-Dawley rats and Swiss 

Webster mice exposed to 300 ppm tetrachloroethylene by inhalation on days 6–15 of gestation (Schwetz 

et al. 1975).  However, neither maternal nor fetal toxicity was reported for rats exposed on gestation 

days 1–18 or 6–18 or in rabbits exposed on gestation days 1–21 or 7–21 by inhalation to 500 ppm 

tetrachloroethylene, with or without pre-gestational exposure (Hardin et al. 1981; NIOSH 1980).  

Limitations of this study include use of only one dose level, use of summary and nonquantitative data, 

and conduct of portions of the study at two separate laboratory facilities. In a more rigorous study, 

Carney et al. (2006) observed significantly decreased fetal weights in offspring of CD rats exposed to 

concentrations of 250 or 600 ppm tetrachloroethylene for 6 hours/day on gestation days 6–19.  The 

decrease in body weight was statistically significant when male and female pups were combined (4% less 

than controls) and for each sex considered separately at 600 ppm (~10% less than controls).  Decreased 

maternal body weight gain was also observed in the dams (Carney et al. 2006).  In addition, a 

nonsignificant increase in the incidence of incomplete ossification of the thoracic vertebral centra 

(11/21 litters versus 4/10 control litters) was noted at 600 ppm. 

In a combined teratogenic and neurodevelopmental study, groups of 30 female Long-Evans rats were 

exposed to tetrachloroethylene at 0 or 1,000 ppm 2 weeks prior to mating through gestational day 20, 

prior to mating through confirmation of pregnancy only, or gestation days 1–20.  Half of the dams were 

sacrificed at gestation day 21 for teratological examination (Tepe et al. 1980).  The remaining dams were 
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allowed to deliver, and pups were evaluated for growth and development for up to 18 months (Manson et 

al. 1981).  No developmental or teratogenic effects were observed in the group exposed only prior to 

gestation.  Fetal weight was decreased by 13.5% in both groups with gestational exposure, with no 

apparent increase in severity due to pre-gestational exposure.  Fetuses from dams exposed both before and 

during gestation, but not gestation-only, exhibited a significant increase in the number of skeletal 

anomalies (e.g., delayed sternal ossification and missing vertebra).  Both groups exposed during gestation 

demonstrated an increase in the incidence of kidney dysplasia, but there was only a significant increase in 

total soft tissue anomalies among fetuses exposed during gestation only. No overt maternal toxicity was 

observed during any of the exposure paradigms. None of the offspring exhibited alterations in survival, 

growth, neurobehavior, or gross pathologies, regardless of treatment paradigm. 

In contrast, neurobehavioral and neurochemical alterations were reported in offspring of Sprague-Dawley 

rats exposed to 900 ppm tetrachloroethylene on gestation days 7–13 or 14–20 (NOAEL 100 ppm) (Nelson 

et al. 1980).  Dams had reduced feed consumption and weight gain, without liver or kidney histological 

alterations.  Pups of dams exposed to 900 ppm on gestation days 7–13 had decreased performance during 

tests of neuromuscular ability (ascent on a wire mesh screen and rotarod balancing) on certain days. 

Offspring (before weaning) from dams exposed to 900 ppm on days 14–20 performed poorly on the 

ascent test on test day 14 only, but later in development, their performance in the rotarod balancing test 

was superior to the controls, and they were more active in an open-field test.  Brains of 21-day-old 

offspring exposed to 900 ppm prenatally had significant decreases in neurotransmitters (dopamine in 

those exposed on gestation days 14–20 and acetylcholine in those exposed on days 7–13 or 14–20).  

There were no microscopic brain lesions.  Changes in brain fatty acid composition were observed in the 

offspring of guinea pigs exposed to tetrachloroethylene at 160 ppm during gestation days 33–65 

(Kyrklund and Haglid 1991).  Measurements of brain lipids did not show any effects.  The investigators 

concluded that changes in fatty acid composition in the brains of developing animals were not greater 

than in adult animals exposed to tetrachloroethylene. 

The highest NOAEL values and all reliable LOAEL values for developmental effects each species and 

duration category are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.1.7  Cancer 

In humans, tetrachloroethylene exposure may be associated with increased risk of cancer.  As discussed 

further below, the highest quality epidemiological studies suggest associations between tetrachloro-
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ethylene exposure and bladder cancer, multiple myeloma, and non-Hodgkin’s lymphoma.  Other 

epidemiology studies suggest possible associations with other cancer sites (esophageal, kidney, lung, 

liver, cervical, and breast cancer), but the data are more limited and/or inconsistent.  Studies in animals 

(JISA 1993; NTP 1986) demonstrate increased risks of liver tumors and mononuclear cell leukemias after 

chronic exposure to tetrachloroethylene.  

Numerous observational, retrospective cohort, and case-control cancer studies have assessed possible 

associations between exposure to tetrachloroethylene and cancer. The EPA (2012a) summarized a large 

number of epidemiological studies and selected those studies considered to have been of adequate quality 

and with a high probability of tetrachloroethylene exposure among individual subjects, and used these to 

assess possible associations between exposure to tetrachloroethylene and selected cancers. The EPA 

Integrated Risk Information System (IRIS) Toxicological Review for Tetrachloroethylene (EPA 2012a) 

may be consulted for a detailed discussion of available epidemiological data for tetrachloroethylene. 

Upon critical review of the available epidemiological data regarding the possible carcinogenicity of 

tetrachloroethylene, the National Research Council (NRC 2010) concluded that there was suggestive 

evidence for an association between tetrachloroethylene exposure and lymphoma, despite weak and 

sometimes inconsistent data.  NRC (2010) concluded that there was limited evidence from 

epidemiological studies for an association with esophageal cancer, and insufficient evidence for an 

association with other cancer types including liver, kidney, cervical, lung, and bladder cancer. After the 

NRC (2010) review, EPA (2012a) considered 27 additional epidemiological studies; these studies, with 

the data also reviewed by NRC (2010), formed the basis for the EPA (2012a) conclusion that the 

epidemiological data supported a pattern of association between tetrachloroethylene exposure and bladder 

cancer, multiple myeloma, and non-Hodgkin’s lymphoma. 

EPA (2012a) relied upon three cohort studies (Blair et al. 2003; Calvert et al. 2011; Lynge et al. 2006) 

and one large case-control study (Pesch et al. 2000), all judged to provide relatively high-quality exposure 

assessments, as the basis for the association between tetrachloroethylene exposure and bladder cancer.  

Calvert et al. (2011) reported an increased standardized mortality ratio (SMR) for bladder and other 

urinary cancers (SMR 2.59; 95% CI 1.24–4.76) among U.S. dry cleaners exposed to tetrachloroethylene 

along with other dry cleaning solvents.  In addition, Lynge et al. (2006) observed a significant increase in 

the relative risk of bladder cancer among Nordic dry cleaners (rate ratio 1.44; 95% CI 1.07–1.93). Pesch 

et al. (2000) reported a significantly increased OR for urothelial cancer among men in the highest 

exposure group (“substantial” exposure) when exposure was assessed by job-task exposure matrix (OR 
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1.8; 95% CI 1.1–3.1); the ORs also increased over the exposure gradient from medium to high and 

substantial. 

EPA (2012a) cited the results of Calvert et al. (2011), Selden and Ahlborg (2011), Radican et al. (2008), 

Boice et al. (1999), and Anttila et al. (1995), all cohort studies with relatively reliable exposure 

assessments, in their finding of an association between tetrachloroethylene exposure and non-Hodgkin’s 

lymphoma.  Calvert et al. (2011) observed nonsignificant increased standardized mortality ratios (SMRs) 

of 1.57 (95% CI 0.78–2.81) and 2.46 (95% CI 0.90–5.36) for non-Hodgkin’s lymphoma among 1,704 dry 

cleaning union members and among 618 dry cleaner employees at facilities using only tetrachloro-

ethylene (respectively). Selden and Ahlborg (2011) reported a significantly increased risk for non-

Hodgkin’s lymphoma among male dry cleaners, but not female dry cleaners, in Sweden; the SIRs were 

2.05 (95% CI 1.30–3.07) in men (n=2,810) and 1.07 (95% CI 0.70–1.57) in women (n=6,630). Radican 

et al. (2008) reported the results of an extended follow-up of 14,455 aircraft maintenance workers. 

Among those who had ever worked with tetrachloroethylene, the hazard ratios (HRs) for mortality from 

non-Hodgkin’s lymphoma were nonsignificantly elevated (HR 2.32; 95% CI 0.75–7.15 among men; 

HR 2.35; 95% CI 0.52–10.71 among women) compared with those workers with no chemical exposure 

(Radican et al. 2008).  Similarly, Boice et al. (1999) observed an increased SMR for non-Hodgkin’s 

lymphoma in aerospace workers with routine exposure to tetrachloroethylene (SMR 1.70; 95% CI 0.73– 

3.34; n=2,631 exposed workers). Analysis of the cohort by years of exposure and using an unexposed 

internal referent group did not show a significant trend (p>0.2) for increased risk with years of exposure 

(Boice et al. 1999). In a follow-up on this cohort, Lipworth et al. (2011, a study not considered by EPA 

[2012a]) reported a SMR of 1.43 (95% CI 1.0–1.98) for non-Hodgkin’s lymphoma among 5,830 workers 

exposed to tetrachloroethylene.  Anttila et al. (1995) observed a nonsignificantly increased SIR for non-

Hodgkin’s lymphoma among Finnish workers with tetrachloroethylene exposure (SIR 3.76; 95% CI 

0.77–11.0; n=849 workers). While some of these studies did not observe statistically significant increases 

in risk of non-Hodgkin’s lymphoma, they demonstrate a consistent pattern of increased risk across a large 

number of subjects. 

The studies used by EPA (2012a) as the primary basis for finding an association with multiple myeloma 

were Radican et al. (2008) and a case-control study by Gold et al. (2010a, 2010b).  Radican et al. (2008) 

reported a significantly increased HR for multiple myeloma among female aircraft workers exposed to 

tetrachloroethylene (HR 7.84; 95% CI 1.43–43.06). Gold et al. (2010a, 2010b) reported increases in ORs 

with estimates of cumulative exposure to tetrachloroethylene; with the longest exposure duration, the OR 

was 2.5 (95% CI 1.1–5.4); a similar result was obtained when latency to tumor formation was considered. 
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Overall, the evidence for an association between human exposure to tetrachloroethylene and cancers is 

limited, but suggests that cancers of the bladder and lymphoreticular system may be increased in exposed 

persons.  A large number of other epidemiological studies is available, and among these are studies that 

suggest a possible association with esophageal, kidney, lung, liver, cervical, and breast cancer. The 

epidemiological data for these other tumor sites is much weaker, with more inconsistent findings, a lack 

of exposure-response data, and/or important confounding factors that are not adequately considered (EPA 

2012a). 

Evidence for an association between exposure to tetrachloroethylene and increased risk of developing 

cancer is provided by animal experiments. Available cancer bioassays report increased incidence and 

severity of mononuclear cell leukemia in male and female rats, as well as reduced time to death from 

mononuclear cell leukemia in female rats, after inhalation exposure (JISA 1993; NTP 1986); in addition, 

both inhalation and oral exposures of mice have resulted in increased incidences of hepatic tumors in both 

sexes (NCI 1977; NTP 1986). 

A 103-week inhalation toxicity/carcinogenicity study of tetrachloroethylene was conducted using male 

and female F344 rats and B6C3F1 mice.  Exposure levels were 0, 200, or 400 ppm tetrachloroethylene for 

rats and 0, 100, or 200 ppm tetrachloroethylene for mice (NTP 1986).  In rats, there were significant and 

dose-related increases in the incidences of mononuclear cell leukemia in exposed males and females 

(males:  28/50, 37/50, and 37/50 in control, 200 ppm, and 400 ppm groups, respectively; females:  18/50, 

30/50, and 29/50 in control, 200 ppm, and 400 ppm groups, respectively).  This neoplasm occurs 

spontaneously in F344 rats, and incidences of mononuclear cell leukemia in control groups (56% for 

males, 36% for females) for this study were higher than for historical chamber controls for the laboratory 

or for untreated controls from the NTP database.  However, NTP’s Board of Scientific Counselors 

considered the incidence of rat leukemias to be a valid finding despite high background frequencies 

because there was a decreased time to the onset of the disease and the disease was more severe in treated 

animals than in control animals.  

Low incidences of renal tubular cell adenomas or adenocarcinomas (1/49, 3/49, and 4/50 in control, 

200 ppm, and 400 ppm groups, respectively) occurred in male rats (NTP 1986).  Although the incidence 

of these tumors was not statistically significant, the fact that there was any increase was itself significant 

because these tumors are considered uncommon in untreated male rats.  In mice of both sexes exposed to 

100 or 200 ppm, there were significantly increased incidences of hepatocellular neoplasms (Table 3-2).  
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Table 3-2.  Hepatocellular Neoplasms in Mice Exposed to Tetrachloroethylene for 
103 Weeks by Inhalationa 

Study and tumor type Control 100 ppm 200 ppm 
NTP 1986 (B6C3F1 
mice) Male Female Male Female Male Female 
Hepatocellular 12/49 (24%) 3/48 (16%) 8/49 (12%) 6/50 (12%) 19/50 (38%) 2/50 (4%) 
adenoma 
Hepatocellular 7/49 (14 %) 1/48 (2%) 25/49 (51%) 13/50 (26%) 26/50 (58%) 36/50 (72%) 
carcinoma 
Hepatocellular 17/49 (35%) 4/48 (8%) 31/49 (63%) 17/50 (34%) 41/50 (82%) 38/50 (76%) 
adenoma or carcinoma 

Control 10 ppm 50 ppm 250 ppm 
JISA 1993 
(Crj:BDF1 mice) Male Female Male Female Male Female Male Female 
Hepatocellular 7/50 3/50 13/50 3/47(6%) 8/50 7/49 26/50 16/49 
adenoma (14%) (6%) (26%) (16%) (14%) (52%) (33%) 
Hepatocellular 7/50 0/50 8/50 0/47 12/50 0/49 25/50 14/49 
carcinoma (14%) (16%) (20%) (50%) (29%) 
Hepatocellular 13/50 3/50 21/50 3/47(6%) 19/50 7/49 40/50 33/49 
adenoma or (26%) (6%) (42%) (38%) (14%) (80%) (67%) 
carcinoma 

aData are presented as the number of neoplasms found per total number of animals in each exposure group. 
Percentages are given in parentheses. 

Sources: NTP 1986; JISA 1993 
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Study limitations include several instances of rats and mice loose from their cages within the exposure 

chambers, with the potential for small aberrations in exposure, as well as elevated incidences of 

mononuclear cell leukemia in control rats, and liver tumors in mice. 

A similar 104-week inhalation toxicity/carcinogenicity study of tetrachloroethylene was conducted using 

male and female F344DuCrj rats and Crj:BDF1 mice (JISA 1993).  Exposure levels were 0, 50, 200, or 

600 ppm tetrachloroethylene for rats and 0, 10, 50, or 250 ppm tetrachloroethylene for mice.  In rats, there 

was a dose-related trend in the incidence of monocytic leukemia of the spleen (males:  11/50, 14/50, 

22/50, 27/50; females: 10/50, 17/50, 16/20, 19/50).  This increase was statistically significant only in 

male rats exposed to 600 ppm. In mice, there was a dose-related trend in the incidences of hepatocellular 

adenoma (males 7/50, 13/50, 8/50, 26/50; females: 3/50, 3/47, 7/49, 16/49) and carcinoma (males: 7/50, 

8/50, 12/50, 25/50; females: 0/50, 0/47, 0/49, 14/49).  Increased incidences of hepatocellular adenoma and 

carcinoma were statistically significant in both sexes exposed to 250 ppm (see Table 3-2).  Dose-related 

trends were also noted for incidences of tumors of the Harderian gland and hemangioendotheliomas of the 

liver and spleen in males, but the incidences were not significantly different from controls at any exposure 

level. 

In summary, the human epidemiological data on cancers in occupationally-exposed groups provide 

suggestive evidence for an association with bladder cancer, non-Hodgkin’s lymphoma, and multiple 

myeloma (EPA 2012a). Following inhalation exposure to tetrachloroethylene, mononuclear cell leukemia 

was observed in rats and hepatic tumors were observed in mice (JISA 1993; NTP 1986).  Both 

mononuclear cell leukemia and hepatic tumors are common in rats and mice, respectively, and the mode 

of action by which tetrachloroethylene induces these neoplasia is not known; thus, the relevance of these 

tumors to humans is uncertain.  Further discussion of the relevance of tumors in animals exposed to 

tetrachloroethylene to humans is presented in Chapter 2.  The cancer effect levels (CELs) for rats and 

mice are recorded in Table 3-1 and plotted in Figure 3-1. 

3.2.2 Oral Exposure 

3.2.2.1  Death 

Oral exposure to large doses of tetrachloroethylene may lead to death from central nervous system 

depression.  While no reliable information in humans is available, rats and mice have died after 
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intermediate-duration exposures as low as 1,780 and 1,000 mg/kg/day, respectively (NCI 1977; Philip et 

al. 2007). 

One human death has been reported following oral treatment with 3 mL (152 mg/kg) of tetrachloro-

ethylene for hookworm infestation (Chaudhuri and Mukerji 1947). This individual was a severely 

emaciated “street beggar” with preexistent chronic malnutrition and septic cholecystitis; thus, it is 

difficult to determine the specific cause of his death and the relevance of this death to healthy humans. 

Single-dose LD50 values of 3,835 and 3,005 mg/kg were determined for male and female rats given 

tetrachloroethylene by gavage in 4% Emulphor in water.  Death occurred within 24 hours after dosing and 

was preceded by tremors, ataxia, and central nervous system depression (Hayes et al. 1986). When given 

in corn oil, half of the female rats treated with a single dose of 5,000 mg tetrachloroethylene/kg died 

(Berman et al. 1995). Philip et al. (2007) reported an oral LD50 of 4,500 mg/kg tetrachloroethylene when 

administered in 5% Emulphor to male Swiss-Webster mice; deaths occurred between 72 and 96 hours 

postdosing.  An oral LD50 of 8,139 mg/kg was reported for mice treated with undiluted 

tetrachloroethylene (Wenzel and Gibson 1951). 

A single death was observed among five female Wistar rats given daily gavage doses of 2,400 mg/kg/day 

tetrachloroethylene in corn oil in a 32-day study (Jonker et al. 1996). The timing and cause of death were 

not reported, but the rats in this group exhibited signs of severe central nervous system depression 

immediately after dosing. 

When Osborne-Mendel rats of each sex received tetrachloroethylene in corn oil by gavage at doses of 

316, 562, 1,000, 1,780, or 3,160 mg/kg 5 days/week for 6 weeks, deaths (number unspecified) occurred in 

both males and females at the two highest doses but not at ≤1,000 mg/kg (NCI 1977). Ten percent 

lethality (2/20) was observed in male Swiss Webster mice given daily gavage doses of 1,000 mg/kg/day 

tetrachloroethylene in 5% Emulphor for 1 for 30 days; no deaths occurred at the lower doses of 150 or 

500 mg/kg/day (Philip et al. 2007). The timing of deaths was not reported, but the fatalities were 

attributed to central nervous system depression based on observations of tremors and ataxia prior to death. 

In a chronic bioassay of tetrachloroethylene administered by gavage to rats and mice, compound-related 

mortality occurred as a result of toxic nephropathy in both species and hepatocellular tumors in mice 

(NCI 1977).  Increased deaths occurred in groups of male and female rats exposed to 471 and 

474 mg/kg/day tetrachloroethylene, respectively, 5 days/week for 78 weeks.  Similarly exposed mice had 
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increased numbers of deaths at doses of 536 and 386 mg/kg/day for males and females, respectively (NCI 

1977). This study is discussed in Sections 3.2.2.2 and 3.2.2.7. 

All reliable LOAEL and LD50 values for death in each species are recorded in Table 3-3 and plotted in 

Figure 3-2. 

3.2.2.2  Systemic Effects 

The highest NOAEL and all reliable LOAEL values for systemic effects in each species and duration 

category are recorded in Table 3-3 and plotted in Figure 3-2.  No studies examining musculoskeletal or 

ocular effects in humans or animals after oral exposure to tetrachloroethylene were located. 

Respiratory Effects. No studies were located regarding respiratory effects in humans after oral 

exposure to tetrachloroethylene.  In a chronic bioassay, microscopic examination of the lungs did not 

reveal any effects in rats treated by gavage with tetrachloroethylene at doses up to 941 mg/kg/day or in 

mice at doses up to 1,072 mg/kg/day, doses that were associated with increased mortality (NCI 1977). 

Cardiovascular Effects. No studies were located regarding cardiovascular effects in humans after 

oral exposure to tetrachloroethylene.  However, cardiovascular effects from chronic ingestion of solvent-

contaminated (including tetrachloroethylene) drinking water were investigated in family members of 

patients with leukemia in Woburn, Massachusetts (Byers et al. 1988).  Fourteen of 25 adults complained 

of cardiac symptoms of tachycardia at rest, palpitations, or near syncope.  Eleven of these were selected 

for detailed testing, which included resting and exercise tolerance electrocardiograms, Holter 

monitoring, echocardiograms, and serum lipid levels.  Of these 11 people, 8 had serious ventricular 

dysfunctions, 7 had multifocal premature ventricular beats, and 6 required cardiac medication.  None of 

the subjects had clinically significant coronary artery disease.  No rationale was given as to the factors 

that were involved in the selection of the 11 given extensive testing.  No background information on 

family history of heart disease, smoking habits, or occupational history was given for any of the 25 family 

members. 

In a chronic bioassay, microscopic examination of the heart did not reveal any effects in rats treated by 

gavage with tetrachloroethylene at doses up to 941 mg/kg/day or in mice at doses up to 1,072 mg/kg/day, 

both of which were doses associated with increased mortality (NCI 1977). 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Fischer- 344) 
once 
(GO) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

5000 F (50% died) 

Reference 
Chemical Form 

Berman et al. 1995 

Comments 

2 Rat 
(Fischer- 344) 

single dose 
(G) 

2500 3200 (increased mortality) Dow Chemical 1983 

3 Rat 
(Sprague-
Dawley) 

once 
(G) 

3835 M (LD50) 

3005 F (LD50) 

Hayes et al. 1986 

4 Rat 
(Fischer- 344) 

single dose 
(G) 

2500 M (increased mortality) Wall and Carreon 1984 

5 Mouse 
(Swiss-
Webster) 

once 
(G) 

4500 M (LD50) Philip et al. 2007 

6 Mouse 
(Swiss-
Webster) 

once 
(G) 

Systemic 
7 Rat 

(Fischer- 344) 
14 d 
(GO) 

Hepatic 500 F 1500 F (increased relative liver 
weights; increased 
alanine 
aminotransferase; 
hepatocellular 
hypertorphy) 

8139 M (LD50) Wenzel and Gibson 1951 

Berman et al. 1995 

Renal 1500 F 

Endocr 1500 F 100
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 
Figure (Strain) (Route) 

System (mg/kg/day) (mg/kg/day) (mg/kg/day) Chemical Form Comments 

Rat 10 d 1x/d Hepatic 1000 M (increased liver to body Goldsworthy and Popp 1987
(Fischer- 344) (GO) weight ratio) 

Bd Wt 1000 M 

9 Rat 
(Wistar) 

5d 
(GO) 

Hepatic 500 M 1000 M significatly increased liver 
weights; induction of 
CYP2B P450 enzymes; 
induction of phase II 
drug-metabolizing 
enzymes. 

Hanioka et al. 1995 

Bd Wt 1000 M 2000 M (body weights 16% lower 
than controls) 

Rat Gd 6-19 Bd Wt 900 F (about 25% decrease in Narotsky and Kavlock 1995
(Fischer- 344) (GO) body weight gain) 

11 Rat 
(Fischer- 344) 

7 d 
(G) 

Bd Wt 1000 M Potter et al. 1996 

12 Rat 
(Wistar) 

14 d 
1x/d 
(G) 

Hepatic 1000 F (increased serum 
enzymes and 
histopathology including 
minimal periportal 
lymphocytic infiltration, 
inflammation, and 
hepatocellular necrosis) 

Rajamanikandan et al. 2012 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

13 Rat 
(Fischer- 344) 

11 d 
(GO) 

Hepatic 

Bd Wt 

1000 M 

500 M 1000 M (22% decrease in body 
weight gain) 

Schumann et al. 1980 

14 Mouse 
(B6C3F1) 

10 d 1x/d 
(G) 

Hepatic 1000 M increased liver to body 
weight ratios; 
peroxisomal proliferation 

Goldsworthy and Popp 1987 

Renal 

Bd Wt 1000 M 

1000 M peroxisomal proliferation 

15 Mouse 
(Swiss-
Webster) 

14 days 
Daily 
(G) 

Hepatic 150 M (>twofold increase in 
serum ALT) 

Philip et al. 2007 

16 Mouse 
(B6C3F1) 

11 d 
(GO) 

Immuno/ Lymphoret 
17 Rat 

(Fischer- 344) 
14 d 
(GO) 

Hepatic 

Bd Wt 1000 M 

1500 F 

100 M (hepatocellular swelling) Schumann et al. 1980 

Berman et al. 1995 

18 Rat 
(Wistar) 

5d 
(GO) 

1000 M 2000 M (atrophy of the spleen 
and thymus) 

Hanioka et al. 1995 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

19 Rat 
(Wistar) 

2 wk 
(W) 

Seo et al. 2008a0.0009 (increased dermal 
lymphocyte infiltration 
and perivascular mast 
cell accumulation) 

20 Mouse 
(ICR) 

2 wk 
(W) 

Neurological 
21 Human once 

(C) 

Seo et al. 20120.26 

Haerer and Udelman 1964116 M (amnesia; dizziness; 
hallucinations) 

22 Human once Kendrick 1929108 M (unconsciousness) 

23 Rat 
(Sprague-
Dawley) 

once 
(GO) 

Chen et al. 200250 M (increased seizure 
threshold) 

24 Rat 
(Fischer- 344) 

single dose 
(G) 

Dow Chemical 19831300 (lethary, loss of 
coordination) 

25 Rat 
(Fischer- 344) 

once Moser et al. 1995500 F 1500 F (lacrimation and gait 
score significantly 
increased; motor activity 
significantly decreased) 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

26 Rat 
(Fischer- 344) 

Gd 6-19 
(GO) 

900 F (ataxia that lasted about 
4 hours after dosing) 

Narotsky and Kavlock 1995 

27 Rat 
(Fischer- 344) 

single dose 
(G) 

1300 M (lethargy and loss of 
coordination) 

Wall and Carreon 1984 

28 Rat 
(Sprague-
Dawley) 

Once 
(GO) 

160 M 480 M (suppression of operant 
response behavior) 

Warren et al. 1996 

Reproductive 
29 Rat 

(Fischer- 344) 
Gd 6-19 
(GO) 

900 F (significant increase in 
resorptions) 

Narotsky and Kavlock 1995 

Developmental 
30 Rat 

(Fischer- 344) 
Gd 6-19 
(GO) 

900 F (increased postnatal 
deaths; increased 
micro/anophthalmia) 

Narotsky and Kavlock 1995 

31 Mouse 
(NMRI) 

7 d 
(GO) 

5 M (increased activity at 60 
days of age) 

Fredriksson et al. 1993 

INTERMEDIATE EXPOSURE 
Death 
32 Rat 

(Wistar) 
32 d 
Daily 
(GO) 

2400 F (1/5 died) Jonker et al. 1996 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to Species 
Figure (Strain) 

33	 Rat 
(Osborne-
Mendel) 

34	 Mouse 
(Swiss-
Webster) 

Systemic 
35 Rat 

(Sprague-
Dawley) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

6 wk 5d/wk 
(GO) 

NCI 19771780 (number of deaths not 
specified) 

30 days 
Daily 
(G) 

Philip et al. 20071000 M (2/20 died) 

90 d 
(W) 

Hemato Hayes et al. 19861400 

Hepatic 400 1400 increased liver/body 
weight ratio 

Renal 14 M 400 M increased kidney/body 
weight ratio 

Bd Wt 14 F 400 F (18% decrease in body 
weight gain) 

1400 F (24% decrease in body 
weight gain) 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

36 Rat 
(Wistar) 

32 d 
Daily 
(GO) 

Hepatic 600 F 2400 F (increased relative liver 
weight; increased alanine 
aminotransferase and 
aspartate 
aminotransferase) 

Jonker et al. 1996 

Renal 600 F 2400 F (urinalysis changes, 
increased relative kidney 
weight, multifocal tubular 
vacuolation and 
karyomegaly) 

Bd Wt 2400 F 

37 Rat 
(Osborne-
Mendel) 

6 wk 5d/wk 
(GO) 

Bd Wt 1000 NCI 1977 

38 Rat 
(Osborne-
Mendel) 

7wk 5d/wk 
(GO) 

Hepatic 995 M (increased liver weight; 
increased Type II GGT 
and foci with or without 
an initiator) 

Story et al. 1986 

39 Mouse 
(Swiss- Cox) 

6 wk 5d/wk 
(GO) 

Hepatic 20 M 100 M (increased relative liver 
weight; increased liver 
triglycerides) 

200 M (hepatic necrosis) Buben and O'Flaherty 1985 
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512
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 
Figure (Strain) (Route) 

System (mg/kg/day) (mg/kg/day) (mg/kg/day) Chemical Form Comments 

40 Mouse 
(Swiss-
Webster) 

41 Mouse 
(Swiss-
Webster) 

42	 Mouse 
(B6C3F1) 

43	 Mouse 
(Swiss-
Webster) 

15 d 
Daily Hepatic 3000 

(GO) 

Renal 3000 

Bd Wt 3000 

15 d 
Daily Hemato 3000 M 

(GO) 

6 wk 5d/wk 
(GO) 

Bd Wt 

30 days 
Daily Hepatic 150 M 500 M 

(G) 

Renal 1000 M 

(increased relative liver 
weight, altered hepatic 
glycolytic and 
gluconeogenic enzyme 
activities, and liver 
histopathology) 

(increased relative kidney 
weight; hypercellular 
glomeruli ) 

Ebrahim et al. 1996 

(decr Hb, Hct, RBC and 
platelet counts; incr WBC 
count) 

(centrilobular fatty 
degeneration and single 
cell necrosis) 

562 F (30% decrease in body 
weight gain) 

Ebrahim et al. 2001 

NCI 1977 

Philip et al. 2007 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Immuno/ Lymphoret 
44 Rat 

(Wistar) 
4 wk 
(W) 

0.0009 (increased relative weight 
of mesenteric lymph 
nodes; enlargement of 
lymphoid nodules with 
clearly visible germinal 
centers) 

Seo et al. 2008a 

45 Mouse 
(ICR) 

4 wk 
(W) 

0.0025 (enhancement of passive 
cutaneous anaphylaxis 
reaction) 

Seo et al. 2012 

Neurological 
46 Rat 

(Sprague-
Dawley) 

8 wk 
5 d/wk 
(GO) 

5 M (impaired nociception 
and increased seizure 
threshold) 

Chen et al. 2002 

47 Rat 
(Wistar) 

32 d 
Daily 
(GO) 

2400 F (severe but transient 
signs of CNS depression) 

Jonker et al. 1996 

CHRONIC EXPOSURE 
Death 
48 Rat 

(Osborne-
Mendel) 

78 wk 5d/wk 
(GO) 

471 M (decreased survival) 

474 F (decreased survival) 

NCI 1977 

49 Mouse 
(B6C3F1) 

78 wk 5d/wk 
(GO) 

536 M (reduced survival) 

386 F (reduced survival) 

NCI 1977 
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089

941

941

941

941

471

474

941

941

941

093

1072

1072

1072

1072

536
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 

Systemic 
50 Rat 

(Osborne-
Mendel) 

78 wk 5d/wk 
(GO) 

Resp 

Cardio 

Gastro 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

51 Mouse 
(B6C3F1) 

78 wk 5d/wk 
(GO) 

Resp 

Cardio 

Gastro 

Hepatic 

Renal 

Endocr 

Dermal 

Bd Wt 

LOAEL 

NOAEL 
(mg/kg/day) 

Less Serious 
(mg/kg/day) 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

941 NCI 1977 

941 

941 

941 

471 M nephropathy 

474 F nephropathy 

941 

941 

941 

1072 NCI 1977 

1072 

1072 

1072 

536 M nephropathy 

386 F nephropathy 

1072 

1072 

1072 
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Table 3-3  Levels of Significant Exposure to Tetrachloroethylene - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Neurological 
52 Human 106 mo 

average 
b 

2.3 Cavalleri et al. 1994 POD (2.3 mg/kg/day) 
derived from PBPK 
model-based 
route-to-route 
extrapolation 

Cancer 
53 Mouse 

(B6C3F1) 
78 wk 5d/wk 
(GO) 

536 M CEL: hepatocellular 
carcinomas 

NCI 1977 

386 F CEL: hepatocellular 
carcinomas 

a The number corresponds to entries in Figure 3-2. 

b Used to derive a chronic-duration oral minimal risk level (MRL) of 0.008 mg/kg/day for tetrachloroethylene; the MRL is based on the equivalent continuous exposure LOAEL of 1.7 
ppm from an inhalation study; a PBPK model was employed to determine the equivalent oral dose (2.3 mg/kg/day) using an internal dose metric of 24-hour AUC of the 
tetrachloroethylene blood concentration-time curve. The route-to-route extrapolated LOAEL of 2.3 mg/kg/day was divided by an uncertainty factor of 100 (10 for human variability and 
10 for use of a LOAEL), and a modifying factor of 3 for database deficiencies (for inadequate information on potential low-dose immune system effects).  ATSDR has adopted the 
chronic-duration oral MRL as the acute-duration and intermediate-duration oral MRLs. See Appendix A for detailed discussion of the oral MRLs for tetrachloroethylene. 

ad lib = ad libitum; B = both sexes; Bd Wt = body weight; BUN = blood urea nitrogen; (C) = capsule; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); Endocr = 
endocrine; (F) = feed; F = Female; (G) = gavage; Gastro = gastrointestinal; Gd = gestational day; Gn pig = guinea pig; (GO) = gavage in oil; (GW) = gavage in water; Hemato = 
hematological; hr = hour(s); Immuno/Lymphoret = immunological/lymphoreticular; LC50 = lethal concentration, 50% kill; Ld = lactation day; LD50 = lethal dose, 50% kill; LOAEL = 
lowest-observed-adverse-effect level; M = male; min = minute(s); Metab = metabolism; mo = month(s); Musc/skel = musculoskeletal; NOAEL = no-observed-adverse-effect level; NS 
= not specified; Occup = occupational; Pmd = pre-mating day; Pnd = post-natal day; Ppd = post-parturition day; Resp = respiratory; x = time(s); (W) = drinking water;  wk = week(s); 
yr = year(s) 
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Figure 3-2 Levels of Significant Exposure to Tetrachloroethylene - Oral
	
Acute (≤14 days)
	

Systemic 

De
ath
 

He
pat
ic 

Re
nal
 
En
doc
rine

Bo
dy 
We
i

10000 

mg/kg/day 

6m 
5m 1r 

2r 
3r2r 3r 4r 9r

7r 7r 7r 
1000 14m 8r 9r 12r 13r 14m 14m 16m 8r 9r 11r 13r10r 

7r 9r 13r 

15m 
100 16m 

10 

1 

0.1 

0.01 

0.001 

0.0001 

c-Cat k-Monkey f-Ferret n-Mink Cancer Effect Level-Animals  Cancer Effect Level-Humans  LD50/LC50
d-Dog m-Mouse j-Pigeon o-Other  LOAEL, More Serious-Animals  LOAEL, More Serious-Humans  Minimal Risk Level
r-Rat h-Rabbit e-Gerbil LOAEL, Less Serious-Animals  LOAEL, Less Serious-Humans  for effects
p-Pig a-Sheep s-Hamster NOAEL - Animals  NOAEL - Humans  other than
q-Cow g-Guinea Pig Cancer 

 ght
 

TE
TR

A
C

H
LO

R
O

E
TH

Y
LE

N
E

111

***D
R

A
FT FO

R
 P

U
B

LIC
 C

O
M

M
E

N
T***

3.  H
E

A
LTH

 E
FFE

C
TS



Figure 3-2 Levels of Significant Exposure to Tetrachloroethylene - Oral (Continued)  
Acute (≤14 days)
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Figure 3-2 Levels of Significant Exposure to Tetrachloroethylene - Oral (Continued)  
Intermediate (15-364 days)
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Figure 3-2 Levels of Significant Exposure to Tetrachloroethylene - Oral (Continued)  
Chronic (≥365 days)
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115 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

Gastrointestinal Effects. Vomiting has been reported in boys treated with unspecified oral doses of 

tetrachloroethylene to remove intestinal worms (Wright et al. 1937).  Histological changes in the 

gastrointestinal tract were not observed in rats or mice treated by gavage with tetrachloroethylene for 

78 weeks at doses that increased mortality (NCI 1977). 

Hematological Effects. No studies were located regarding hematological effects in humans after 

oral exposure to tetrachloroethylene. In addition, the data on the hematologic effects of 

tetrachloroethylene in laboratory rodents exposed orally are limited to intermediate-duration studies in 

mice yielding uncertain findings. 

In a 15-day study of male Swiss mice exposed to tetrachloroethylene in sesame oil via gavage dosing at 

3,000 mg/kg/day, hematologic changes included significantly decreased hemoglobin (17% less than 

controls), hematocrit (23% lower), and erythrocyte (21%) and platelet counts (32%), as well as increased 

leukocyte count (42% higher than controls; Ebrahim et al. 2001). 

Hemoglobin, hematocrit, and cell counts were not affected in rats exposed to tetrachloroethylene in 

drinking water (4% Emulphor) at doses up to 1,400 mg/kg/day for 90 days (Hayes et al. 1986).  Mice 

exposed to 0.1 mg/kg/day tetrachloroethylene in drinking water for 7 weeks had high relative 

concentrations of tetrachloroethylene in the spleen, increased spleen weight, increased hemosiderin 

deposits and congestion of red pulp, increased serum LDH isozyme I, which was interpreted as being 

indicative of erythrocyte hemolysis, and a relative decrease in bone marrow erythropoiesis (Marth 1987).  

Milder or no hematological effects, depending on the parameters evaluated, occurred at exposures to 

0.05 mg/kg/day.  All hematological effects were reversible within an 8-week recovery period. There are 

several limitations of this study.  First, only one sex of mouse was evaluated.  Second, splenic 

hemosiderosis, one of the parameters evaluated, is present in normal mouse spleens; therefore, the 

presence of this pigment in the spleen is not necessarily an indicator of hemolysis unless it is more 

widespread and severe compared to control spleens.  Third, grading of lesions by distribution and severity 

for either spleen or bone marrow was not documented in the paper.  Fourth, the study author did not 

provide documentation that LDH isozyme I is the isozyme found in mouse erythrocytes. 

Mild microcytic anemia occurred in B6C3F1 mice exposed via drinking water to tetrachloroethylene plus 

24 other groundwater contaminants (Germolec et al. 1989).  This study is discussed in more detail in 

Section 3.2.2.3. 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

 

       

      

      

    

 

    

    

  

   

     

    

  

     

  

 

 

   

 

     

   

   

  

 

      

 

 

     

 

  

    

  

    

   

116 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

Hepatic Effects. There is little information on the potential hepatic effects in humans exposed orally 

to tetrachloroethylene. Available information is limited to a single case report of obstructive jaundice and 

hepatomegaly reported in a 6-week-old infant exposed to tetrachloroethylene (1 mg/dL) via breast milk 

(Bagnell and Ellenberger 1977).  After breast feeding was ended, a rapid improvement was observed. 

The liver is a principal target organ in rodents exposed orally to tetrachloroethylene.  Hepatic effects in 

rodents from oral exposure to tetrachloroethylene are similar to those produced by inhalation exposure.  

Mice are more sensitive than rats to tetrachloroethylene-induced toxic effects; these effects are related to 

tetrachloroethylene metabolism—particularly the formation of trichloroacetic acid—as discussed in 

Section 3.4. Hepatic effects in mice have occurred after acute- and intermediate-duration exposures to 

doses ≥100 mg/kg/day (Buben and O’Flaherty 1985; Schumann et al. 1980).  Chronic-duration oral 

bioassays of tetrachloroethylene in rats and mice have been conducted (NCI 1977).  No nonneoplastic 

hepatic lesions were observed, but these studies had significant limitations, as discussed further in 

Section 3.2.2.7.  

Acute-duration studies have shown liver changes after only a single dose of tetrachloroethylene.  

Exposure of Swiss mice to 500 or 1,000 mg/kg/day tetrachloroethylene via gavage resulted in 

histopathology changes including centrilobular fatty degeneration and necrosis, with cytoplasmic 

vacuolization at the higher dose, after only 1 day of exposure (Philip et al. 2007). In this study, serum 

ALT was significantly increased (>2-fold) at exposures ≥150 mg/kg/day after 1 day of exposure. 

Tetrachloroethylene administered by gavage at a dose of 1,000 mg/kg/day for 10 days to male B6C3F1 

mice increased relative liver weights and elevated cyanide-insensitive palmitoyl CoA oxidase levels, 

indicative of peroxisomal proliferation (Goldsworthy and Popp 1987).  Schumann et al. (1980) reported 

hepatocellular swelling in mice given 11 daily gavage doses of 100 mg tetrachloroethylene/kg. 

Liver weights were significantly increased and CYP2B P-450 enzymes were significantly induced in rats 

treated by gavage with tetrachloroethylene in corn oil at 1,000 and 2,000 mg/kg/day for 5 days (Hanioka 

et al. 1995).  The P-450 enzymes were also significantly induced at 500 mg/kg/day, although no change in 

liver weight was noted at this dose.  Phase II drug metabolizing enzymes were also induced with 

significant increases in DT-diaphorase activity at 2,000 mg/kg/day, significant increases in glutathione 

S-transferase activity at 1,000 and 2,000 mg/kg/day, and significant increases in uridine 5’diphosopho 

(UDP)-glucuronyltransferase activity at all doses tested (≥125 mg/kg/day). Tetrachloroethylene 

administered by gavage at a dose of 1,000 mg/kg/day for 10 days F344 rats did not elevate cyanide-
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insensitive palmitoyl CoA oxidase levels significantly above controls, although relative liver weights 

were increased (Goldsworthy and Popp 1987).  Schumann et al. (1980) observed no liver changes in rats 

given 11 daily gavage doses up to 1,000 mg/kg/day. Increased relative liver weights, increased serum 

ALT, and hepatocellular hypertrophy were observed in female rats treated by gavage with 

tetrachloroethylene in corn oil at a dose of 1,500 mg/kg/day for 14 days, but not at 500 mg/kg/day 

(Berman et al. 1995). Rajamanikandan et al. (2012) observed increased serum AST, ALT, and alkaline 

phosphatase, along with histopathology changes (minimal periportal lymphocytic infiltration, 

inflammation, and hepatocellular necrosis; incidences not reported) in female Wistar rats given 

14 consecutive daily gavage doses of 1,000 mg/kg/day tetrachloroethylene.  The authors also measured 

increased levels of hepatic lipid oxidation as well as decreased antioxidant levels (Rajamanikandan et al. 

2012). 

Similar liver effects are seen after intermediate-duration exposure to tetrachloroethylene. When male and 

female Swiss mice were given tetrachloroethylene via gavage in sesame oil at a dose of 3,000 mg/kg/day 

for 15 consecutive days, hepatic effects included increased relative liver weight (in the absence of body 

weight change), altered glycolytic and gluconeogenic enzyme activities, and focal necrosis with hydropic 

changes (Ebrahim et al. 1996).  In a similar study, groups of four male Swiss mice received daily gavage 

doses of 150, 500, or 1,000 mg/kg/day for 1, 7, 14, or 30 consecutive days (Philip et al. 2007).  Serum 

ALT was significantly increased (>2-fold) in all exposure groups after 1 and 14 days of exposure, but 

groups exposed for 30 days exhibited no difference from control in serum ALT levels.  Histopathology 

changes observed after exposure to 500 or 1,000 mg/kg/day included centrilobular fatty degeneration and 

necrosis, with cytoplasmic vacuolization at the higher dose; these changes were less pronounced after 

30 days of exposure than after 1 day (Philip et al. 2007).  Toxic effects induced in male Swiss Cox mice 

given tetrachloroethylene by gavage at doses of 0, 20, 100, 200, 500, 1,000, 1,500, or 2,000 mg/kg/day 

for 6 weeks were increased relative liver weight and triglycerides beginning at 100 mg/kg/day, decreased 

glucose-6-phosphate and increased SGPT at 500 mg/kg/day, and hepatocellular lesions at 

≥200 mg/kg/day.  Lesions consisted of centrilobular hepatocellular hypertrophy, karyorrhexis, 

centrilobular necrosis, polyploidy, and hepatocellular vacuolization.  All of these effects were present in 

the two dose groups examined histologically (200 and 1,000 mg/kg/day) (Buben and O'Flaherty 1985). 

Centrilobular necrosis and increased levels of protein and protein-bound carbohydrates were observed in 

the livers of rats treated by gavage with tetrachloroethylene in sesame oil at 3,000 mg/kg/day for 42 days 

(Ebrahim et al. 1995). 
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Exposure to gavage doses of 2,400 mg/kg/day tetrachloroethylene in corn oil for 32 days resulted in 

increased relative liver weights as well as increased levels of serum AST and ALT in female Wistar rats; 

no hepatic effects were seen in the group exposed to 600 mg/kg/day (Jonker et al. 1996). Elevated liver 

weights, relative to body weight but not brain weight, occurred in both sexes of Sprague-Dawley rats 

given 1,400 mg/kg/day tetrachloroethylene in drinking water for 13 weeks.  While the serum enzyme, 

5'-nucleotidase, was increased in females given 1,400 mg/kg/day and in males given 400 or 

1,400 mg/kg/day, results of other biochemical measurements did not suggest a hepatotoxic effect.  In 

addition, gross necropsy examination did not reveal any abnormalities in selected organs, including the 

liver (Hayes et al. 1986).  The major limitation of this study was the lack of microscopic examination of 

livers. 

Tetrachloroethylene has been tested for initiating and promoting activity in a rat liver foci assay (Story et 

al. 1986).  Mean liver weights and/or liver-to-body weight ratios were significantly increased relative to 

the controls in partially hepatectomized adult male Osborne-Mendel rats (10/group) administered 

995 mg/kg/day tetrachloroethylene by gavage in corn oil.  In both the presence and absence of an initiator 

(30 mg/kg diethylnitrosamine), tetrachloroethylene (995 mg/kg/day) induced an increase in enzyme-

altered foci (foci with increased GGT activity). 

Chemically-related nonneoplastic liver lesions were not reported for Osborne-Mendel rats or B6C3F1 

mice given tetrachloroethylene by gavage in a chronic bioassay (NCI 1977).  This study, including its 

limitations, is discussed in Section 3.2.2.7. 

Renal Effects. No studies were located regarding renal effects in humans after oral exposure to 

tetrachloroethylene. Acute-duration studies measuring renal effects in animals have not used doses lower 

than 1,000 mg/kg/day.  At this dose, male, but not female, rats exhibited renal changes characteristic of 

α-2u-globulin nephropathy (Berman et al. 1995; Goldsworthy et al. 1988; Potter et al. 1996), while male 

mice exhibited peroxisomal proliferation in the kidneys (Goldsworthy and Popp 1987).  The lowest dose 

resulting in renal effects in intermediate-duration studies was 400 mg/kg/day; rats exposed to this dose for 

90 days showed increased relative kidney weights (Hayes et al. 1986).  In chronic oral studies, toxic 

nephropathy, which contributed to early mortality, was observed in both sexes of mice and rats at TWA 

doses ≥386 mg/kg/day; these studies had significant limitations, as discussed in Section 3.2.2.7. 

Daily gavage administration of 1,000 mg/kg tetrachloroethylene to male F344 rats for 10 days produced 

an increase in protein droplet accumulation and cell proliferation in the P2 segment of the kidney.  This 
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effect, not seen in female rats, was correlated with an increased presence of α-2μ-globulin in the proximal 

convoluted epithelial cells (Goldsworthy et al. 1988). Results from an earlier study by the same 

investigators indicated that peroxisomal proliferation in the rat kidney was not associated with 

administration of 1,000 mg/kg/day tetrachloroethylene (Goldsworthy and Popp 1987).  Peroxisomal 

proliferation was the only end point investigated in this experiment.  Male F344 rats receiving daily 

gavage doses of 1,000 mg/kg/day tetrachloroethylene in 4% Emulphor exhibited increased numbers of 

hyaline droplets in renal tubules, also consistent with α-2μ-globulin accumulation, after 1, 3, or 7 days of 

exposure (Potter et al. 1996).  Kidney weight, renal cell proliferation rate, and frequency of DNA strand 

breaks in the kidney were not altered by exposure (Potter et al. 1996). Kidney effects were not observed 

in female rats treated by gavage with tetrachloroethylene in corn oil at a dose of 1,500 mg/kg/day for 

14 days (Berman et al. 1995).  

Male B6C3F1 mice exposed to 1,000 mg/kg/day by gavage for 10 days had peroxisomal proliferation, as 

evidenced by elevated cyanide-insensitive palmitoyl CoA oxidase levels (Goldsworthy and Popp 1987). 

Increased relative kidney weights (in the absence of body weight changes) were observed in male and 

female Swiss mice given gavage doses of 3,000 mg/kg/day tetrachloroethylene in sesame oil for 

15 consecutive days (Ebrahim et al. 1996). Histopathology examination of the kidneys showed 

hypercellular glomeruli. In male Swiss mice given daily gavage doses of 150, 500, or 1,000 mg/kg/day 

for 1, 7, 14, or 30 consecutive days, cell proliferation was increased in the kidneys after 30 days of 

exposure, but no histopathology changes were seen, and no change in BUN was observed at any time 

point (Philip et al. 2007).  

Male rats exposed to 1,500 mg/kg/day tetrachloroethylene by gavage for 42 days developed typical 

α-2μ-globulin nephropathy (Green et al. 1990).  Male rats, but not female rats, also developed 

α-2μ-globulin nephropathy following daily gavage treatment with tetrachloroethylene at 500 mg/kg/day 

for 4 weeks (Bergamaschi et al. 1992).  Exposure of female Wistar rats to gavage doses of 

2,400 mg/kg/day tetrachloroethylene in corn oil for 32 days resulted in urinalysis changes including 

increased urine volume, and increased protein, GGT, ALP, LDH, and NAG excretion.  Increased relative 

kidney weights were also noted, and histopathology examination revealed increased incidences of mild 

multifocal tubular vacuolation and karyomegaly. (Jonker et al. 1996). Rats exposed to a lower dose of 

600 mg/kg/day did not exhibit renal effects (Jonker et al. 1996). 

Hypercellular glomeruli and congestion of the convoluted tubules were observed in the kidneys of rats 

treated by gavage with tetrachloroethylene (3,000 mg/kg/day) in sesame oil for 42 days (Ebrahim et al. 
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1995).  Significant increases in the levels of protein and protein-bound carbohydrates in the kidneys were 

also observed.  No other doses of tetrachloroethylene were used in this study.  Increased kidney/body 

weight ratios were observed in male rats treated with tetrachloroethylene in the drinking water at 

400 mg/kg/day for 90 days (Hayes et al. 1986).  No effects on the kidneys were observed at a dose of 

14 mg/kg/day. 

Osborne-Mendel rats and B6C3F1 mice of each sex were exposed to tetrachloroethylene in corn oil by 

gavage for 78 weeks, followed by observation periods of 32 weeks (rats) and 12 weeks (mice) in a 

carcinogenicity bioassay (NCI 1977).  TWA doses for the study were 536 and 1,072 mg/kg/day for male 

mice, 386 and 772 mg/kg/day for female mice, 471 and 941 mg/kg/day for male rats, and 474 and 

949 mg/kg/day for female rats; untreated and vehicle control groups were included.  Study limitations are 

discussed in Section 3.2.2.7.  Toxic nephropathy occurred at all dose levels in both sexes of rats and mice, 

as did increased mortality. The nephropathy in both species was characterized by degenerative changes in 

the proximal convoluted tubules at the junction of the cortex and medulla, with cloudy swelling, fatty 

degeneration, and necrosis of the tubular epithelium and hyaline intraluminal casts.  Rat kidneys also had 

occasional basophilic tubular cytomegaly, chronic inflammation, and mineralization. 

Endocrine Effects. No studies were located regarding endocrine effects in humans following oral 

exposure to tetrachloroethylene, and few data are available in animals.  Histopathological changes in the 

adrenal glands were not observed in female rats treated by gavage with tetrachloroethylene in corn oil at a 

dose of 1,500 mg/kg/day for 14 days (Berman et al. 1995).  In a chronic bioassay, histological changes 

were not observed in the adrenal glands, thyroid, parathyroid, pancreas, or pituitary of rats and mice 

treated by gavage with tetrachloroethylene at doses that resulted in increased mortality (NCI 1977). 

Dermal Effects. In family members of patients with leukemia from the Woburn study, 13 of 25 adults 

who had been chronically exposed to solvent-contaminated drinking water (including tetrachloroethylene) 

developed skin lesions. These were maculopapular rashes that occurred approximately twice yearly and 

lasted 2–4 weeks. These skin conditions generally disappeared within 1–2 years after cessation of 

exposure to contaminated water (Byers et al. 1988).  There is no conclusive evidence that skin lesions 

were related to solvent exposure in general or to tetrachloroethylene specifically. 

Few data on dermal effects after oral exposure are available in animals. In a chronic bioassay, 

histological changes were not observed in the skin of rats and mice treated by gavage with 

tetrachloroethylene at doses that resulted in increased mortality (NCI 1977). 
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Body Weight Effects. No studies of body weight effects in humans exposed to tetrachloroethylene 

were identified in the available literature. Body weight effects observed in studies of animals exposed 

orally are not consistent across study or species/strain of animal.  At the end of a 5-day study, body 

weights of male Wistar rats treated by gavage with tetrachloroethylene at 2,000 mg/kg/day were 16% 

lower than controls (Hanioka et al. 1995).  Body weight gain was decreased 22% in male F344 rats 

treated by gavage with tetrachloroethylene at 1,000 mg/kg/day for 11 days (Schumann et al. 1980).  A 

decrease in body weight gain of approximately 25% was observed in pregnant F344 rats treated by 

gavage with tetrachloroethylene in corn oil at 900 mg/kg/day on gestation days 6–19 (Narotsky and 

Kavlock 1995).  No effect on body weight was observed in F344 rats treated by gavage with 

tetrachloroethylene at 1,000 mg/kg/day for 7 or 10 days (Goldsworthy and Popp 1987; Potter et al. 1996), 

in female Wistar rats given gavage doses of 2,400 mg/kg/day tetrachloroethylene for 32 days (Jonker et 

al. 1996), in B6C3F1 mice treated by gavage with tetrachloroethylene at 1,000 mg/kg/day for 10 or 

11 days (Goldsworthy and Popp 1987; Schumann et al. 1980). 

In intermediate-duration studies, no effect on body weight was observed in male and female Swiss mice 

treated by gavage with tetrachloroethylene at 3,000 mg/kg/day for 15 days (Ebrahim et al. 2001), in 

female Wistar rats given gavage doses of 2,400 mg/kg/day tetrachloroethylene for 32 days (Jonker et al. 

1996), or in Osborne-Mendel rats treated by gavage with tetrachloroethylene at doses ≤1,000 mg/kg/day 

for 6 weeks (NCI 1977).  Hayes et al. (1986) reported 18 and 24% decreases in body weight gain in 

female Sprague-Dawley rats treated with tetrachloroethylene in the drinking water at 400 and 

1,400 mg/kg/day, respectively, for 90 days.  Body weight gain was significantly decreased (15%) in 

males only at 1,400 mg/kg/day.  A 30% reduction in body weight gain was observed in female B6C3F1 

mice treated by gavage with tetrachloroethylene at 562 mg/kg/day for 90 days (NCI 1977), but no effect 

on body weight gain in male mice was noted at this dose. 

An explanation for the differences in effect on body weight in rats in the studies was not readily apparent; 

the differences do not appear to be related to strain or sex of the animals or to exposure duration. 

Changes in body weight in the available chronic-duration oral studies are also not consistent.  Changes in 

body weight were not observed in Osborne-Mendel rats or B6C3F1 mice in a chronic bioassay at doses 

associated with increased mortality (up to 941 mg/kg/day for rats and 1,072 mg/kg/day for mice) (NCI 

1977). 
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3.2.2.3  Immunological and Lymphoreticular Effects 

No studies were located regarding immunological and lymphoreticular effects in humans after oral 

exposure to tetrachloroethylene alone. The studies conducted to date were of exposure to mixed solvents 

and do not provide a clear picture of potential immunotoxic effects after oral exposure.  Recent animal 

studies (Seo et al. 2008a, 2012) observed enhancement of antigen-stimulated allergic responses in rats and 

mice, and enhanced inflammation in rats, after exposure to very low oral doses of tetrachloroethylene 

(from 0.0009 to 0.09 mg/kg/day); however, the effects are of uncertain toxicological and human health 

relevance, as the degree of change that should be considered adverse is unclear. 

There was, however, a study suggesting immunological effects in humans with chronic exposure to a 

solvent-contaminated domestic water supply.  Several wells in Woburn, Massachusetts, were 

contaminated by a variety of solvents. The two main volatile chlorinated hydrocarbons measured before 

well closure were trichloroethylene (267 ppb) and tetrachloroethylene (21 ppb) (Byers et al. 1988). A 

potential association between water contamination in Woburn and cases of childhood leukemia is 

discussed in Section 3.2.2.7. 

Some immunological abnormalities were found in 23 adults in Woburn who were exposed to 

contaminated water and who were family members of children with leukemia.  These immunological 

abnormalities, tested for 5 years after well closure, were persistent lymphocytosis, increased numbers of 

T lymphocytes, and depressed helper:suppressor T cell ratio. A follow-up test 18 months later revealed 

reductions in lymphocyte counts, decreased numbers of suppressor T cells, and increased 

helper:suppressor ratio.  Auto-antibodies, particularly anti-nuclear antibodies, were detected in 48% 

(11/23) of the adults tested.  In the Woburn population, there was also a suggestion of an association 

between cumulative exposure to contaminated wells and increased urinary tract infections and respiratory 

disorders (asthma, bronchitis, pneumonia) in children (Lagakos et al. 1986). 

Interpretation of the results reported by Byers et al. (1988) and Lagakos et al. (1986) is limited because of 

the possible bias in identifying risk factors for immunological abnormalities in a small, nonpopulation-

based group identified through probands with leukemia.  There is evidence that some genetic factor or 

factors may predispose persons to both altered immunologic parameters as well as an increased risk of 

developing leukemia.  Other limitations of this study are described in Section 3.2.2.7. 
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Atrophy of the spleen and thymus, indicated by significantly decreased organ weights, was noted in rats 

treated by gavage with tetrachloroethylene in corn oil at 2,000 mg/kg/day for 5 days (Hanioka et al. 

1995).  This effect was not observed at 1,000 mg/kg/day.  Histopathological changes in the spleen and 

thymus were not observed in female rats treated by gavage with tetrachloroethylene in corn oil at 

1,500 mg/kg/day for 14 days (Berman et al. 1995). 

Enhanced antigen-stimulated allergic responses have been demonstrated following small oral doses of 

tetrachloroethylene in both rats (Seo et al. 2008a) and mice (Seo et al. 2012). In addition, rats exposed to 

tetrachloroethylene displayed enhanced inflammatory responses (Seo et al. 2008a).  Wistar rats and ICR 

mice were exposed to drinking water containing 0, 0.01, or 1 mg/L tetrachloroethylene for 2 or 4 weeks 

(estimated doses of 0, 0.0009, or 0.09 mg/kg/day in rats; 0, 0.0025, or 0.26 mg/kg/day in mice).  Rats and 

mice were sensitized by intraperitoneal injection of anti-dinitrophenol IgE antibody 2 days or 1 day prior 

to the end of exposure, respectively.  The passive cutaneous anaphylaxis (PCA) reaction was significantly 

increased in rats treated with 0.09 mg/kg/day and mice treated with 0.0025 and 0.26 mg/kg/day for 

4 weeks, in a dose-dependent manner.  Neither species demonstrated enhanced PCA reactions after 

exposure for 2 weeks.  However, microscopic examination of skin demonstrated that all rats exposed for 

2 weeks demonstrated increased lymphocyte infiltration (~1.2-fold more lymphocytes in treated groups 

compared with controls) and perivascular mast cell accumulation (~2-fold more). In addition, rats 

exposed to 0.09 mg/kg/day for 2 weeks demonstrated significantly increased (~1.3-fold) histamine release 

from antigen-stimulated peritoneal mast cells.  These assays were not conducted following the 4-week 

exposure in rats or any exposure duration in mice. There was no treatment-related change in the relative 

weights of the spleen, thymus, and cervical lymph node of rats exposed for 4 weeks (not assessed at 

2 weeks in rat or any duration in mice), but the relative mesenteric lymph node weight was significantly 

increased at both exposure levels.  Microscopic examination of the mesenteric lymph nodes showed 

enlarged lymphoid nodules with clearly visible germinal centers; the study authors did not indicate the 

incidence or severity of this effect in the two treated groups. 

Immunological effects were detected in a study exposing female B6C3F1 mice to drinking water 

containing tetrachloroethylene (maximum concentration 6.8 ppm) and 24 other contaminants frequently 

found in groundwater for 14 or 90 days (Germolec et al. 1989).  Mice exposed to the highest 

concentration of this laboratory-prepared stock solution had a dose-related suppression in antibody 

plaque-forming units to sheep red blood cells and increased host susceptibility to infection by the 

protozoan, Plasmodium yoelii. There were no changes in lymphocyte number or T cell subpopulations, 

no alterations of T cell, natural killer cell or macrophage activities, and no effect on host susceptibility to 
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challenge with intravenous Listeria monocytogenes (bacteria) or PYB6 tumor cells.  These findings 

indicate an immunotoxic effect on B cells/humoral immunity (Germolec et al. 1989).  These effects 

cannot be attributed to tetrachloroethylene alone. 

In a chronic bioassay, microscopic examination of the spleen, lymph nodes, and thymus of rats and mice 

exposed by gavage to tetrachloroethylene at doses that resulted in increased mortality did not reveal any 

adverse immunological or lymphoreticular effects (NCI 1977). 

The highest NOAEL values and all LOAEL values from each reliable study for immunological and 

lymphoreticular effects identified in rats for each duration category are recorded in Table 3-3 and plotted 

in Figure 3-2. 

3.2.2.4  Neurological Effects 

Neurological Effects in Humans. Acute neurological effects in humans after ingesting 

tetrachloroethylene are similar to those seen after inhalation, such as dizziness, loss of coordination, and 

narcosis, in some cases leading to coma; however, available data are limited to a small number of case 

reports. A 6-year-old child who ingested 12–16 g of tetrachloroethylene was conscious upon admission 

to a hospital 1 hour after ingestion, but his level of consciousness deteriorated to somnolence and 

subsequently coma (Koppel et al. 1985).  Other symptoms included drowsiness, vertigo, agitation, and 

hallucinations.  The boy recovered completely. 

The oral administration of tetrachloroethylene as an anthelminthic in humans was common at one time; 

however, newer therapeutic agents have since replaced tetrachloroethylene. Narcotic effects, inebriation, 

perceptual distortion, and exhilaration, but not death, were observed in patients receiving doses ranging 

from 2.8 to 4 mL (about 4.2–6 g) of tetrachloroethylene orally as an anthelminthic (Haerer and Udelman 

1964; Kendrick 1929; Sandground 1941; Wright et al. 1937). 

A series of retrospective cohort studies examining neurobehavioral and developmental end points as well 

as cancer was conducted on residents of Cape Cod, Massachusetts who were exposed to 

tetrachloroethylene leaching from the lining of vinyl-lined asbestos-cement water supply pipes 

(Aschengrau et al. 1998, 2003, 2008, 2009, 2011, 2012; Getz et al. 2012; Janulewicz et al. 2008, 2012; 

Paulu et al. 1999; Vieira et al. 2005).  The exposure, discovered in 1980, had been occurring for the 

preceding 15 years; concentrations in the water in 1980 ranged from 1.5 to 7,750 μg/L. Exposure to other 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

  

      

   

    

    

    

    

  

      

     

 

    

    

  

      

       

    

      

     

  

    

     

  

  

   

     

 

   

 

    

       

     

       

125 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

water contaminants was considered by the study authors to be rare, limiting confounding by coexposures.  

Most of the studies examined effects in children who had been exposed in utero or during the first 5 years 

of life.  In these studies, residential histories were obtained by questionnaire, and locations of affected 

pipes were collected from municipalities.  Total exposure for each individual subject was then estimated 

as the total amount (in grams) of tetrachloroethylene delivered to the subject’s residence by modeling 

leaching of tetrachloroethylene from the pipes and subsequent transport to households (using EPANET 

water distribution modeling software). The studies did not include estimates of tetrachloroethylene 

intake, as they considered information on water consumption and bathing habits obtained by 

questionnaire to be of limited reliability. Exposure to tetrachloroethylene in this cohort likely included 

oral, inhalation, and dermal routes, but oral exposure is considered to be the dominant exposure route. 

Studies examining neurobehavioral end points of learning, attention, and behavior in the Cape Cod cohort 

were conducted (Janulewicz et al. 2008, 2012).  Janulewicz et al. (2008) used parental questionnaires to 

compare academic difficulties, diagnoses of attention deficit disorder or hyperactive disorder, and 

behavioral problems among 1,910 exposed and 1,928 unexposed children whose mothers lived on Cape 

Cod during pregnancy or the first 5 years after birth. The results showed no differences in reported 

frequencies of learning, behavior, or attention difficulties in the groups exposed prenatally or during the 

early postnatal period (Janulewicz et al. 2008). A follow-up study examining neuropsychological end 

points in adults was performed (Janulewicz et al. 2012); participation in this study was very low, with 

only 35 exposed and 28 unexposed subjects agreeing to neuropsychological testing of original cohort.  

This study also reported no evidence of an association between exposure and neuropsychological tests for 

omnibus intelligence, academic achievement, or language end points using either crude analysis or 

multivariate analysis considering likely confounders (Janulewicz et al. 2012).  Suggestive associations 

were noted between exposure and decrements in visuospatial functioning, learning and memory, motor 

speed, attention, and mood; however, the differences were not statistically significant (Janulewicz et al. 

2012). The small group sizes in this study represent a significant limitation. 

Aschengrau et al. (2011) examined the frequency of risky behaviors (including cigarette smoking, alcohol 

consumption, and drug use) during the teenage and young adult years among exposed and unexposed 

members of the cohort (exposure occurred during gestation and early childhood).  A total of 831 exposed 

and 547 unexposed subjects with adequate information for exposure assessment provided information by 

questionnaire.  For both smoking (relative risk 1.6; 95% CI 1.1–2.3) and alcohol use (relative risk 1.3; 

95% CI 1.0–1.7), slight increases in relative risk were noted in the subjects whose exposure estimates 

were in the highest tertile; no increase in risk was seen for all exposed subjects or for those in lower 
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tertiles.  A larger increase in relative risk was noted for association between drug use and 

tetrachloroethylene exposure; in the highest tertile, the relative risks were 1.6 (95% CI 1.2–2.2) for teen 

use of two or more illicit drugs, and 1.5 (95% CI 1.2–1.9) for adult use. The same subjects also 

responded to questions on mental illness, and results of this evaluation were published by Aschengrau et 

al. (2012).  This study observed increased risks (1.5–2.1-fold increases) of bipolar disorder, post-

traumatic stress disorder, and schizophrenia among exposed subjects, although the increases were not 

statistically significant. No increase in the risk for depression was observed. Among the subjects in the 

highest exposure tertile, a significant increase in the risk for bipolar disorder was observed (n=18 exposed 

cases; risk ratio 2.7; 95% CI 1.3–5.6 adjusted for covariates). 

Getz et al. (2012) examined visual acuity, contrast sensitivity, and color discrimination in a small subset 

of the Cape Cod cohort (n=29 exposed and 25 unexposed) who agreed to vision testing.  The testing 

revealed a nonsignificant decrease in contrast sensitivity and a significant increase in color confusion 

measured by the Farnsworth test (mean difference of 0.05; 95% CI 0.003–0.10) but not when measured 

by Lanthony’s D-15d test.  While limited by the small group sizes, the suggestive findings in this study 

are supported by studies of occupational and residential exposure to inhaled tetrachloroethylene that also 

observed decreased contrast sensitivity and color discrimination (Gobba et al. 1998; Schreiber et al. 2002; 

Storm et al. 2011; see Section 3.2.1.4). 

Neurological Effects in Animals. Most of the limited available animal data on neurological effects of 

oral exposure to tetrachloroethylene comes from acute-duration studies; the lowest LOAEL in these 

studies was for suppression of operant behavior response in rats exposed to single gavage doses of 

480 mg/kg (Warren et al. 1996).  A single intermediate-duration study observed impairments in 

nociception and an increased threshold for seizure initiation in rats exposed to 5 mg/kg/day for 8 weeks 

(Chen et al. 2002).  Chronic studies of effects on neurological function in animals exposed orally are not 

available. 

When female Wistar rats received daily gavage doses of 2400 mg/kg/day tetrachloroethylene in corn oil 

in a 32-day study, severe but transient signs of central nervous system depression were noted immediately 

after dosing (Jonker et al. 1996).  Ataxia was observed in pregnant rats treated by gavage with 

tetrachloroethylene in corn oil at 900 mg/kg/day on gestation days 6–19 (Narotsky and Kavlock 1995). 

The ataxia lasted about 4 hours after dosing. Four hours after female rats were given a single gavage dose 

of 1,500 mg tetrachloroethylene/kg, lacrimation and gait scores were significantly increased and motor 
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activity was significantly decreased (Moser et al. 1995). The study authors indicated that the effects were 

less 24 hours after dosing, but specific data were not provided.  

A battery of neurological tests that examined autonomic, neuromuscular, and sensorimotor function, as 

well as activity and excitability, did not show any significant effects at 4 or 24 hours after a single gavage 

dose of 500 mg/kg, or 24 hours after the last of 14 daily doses of 1,500 mg tetrachloroethylene/kg (Moser 

et al. 1995). Operant response behavior was suppressed in male Sprague-Dawley rats tested immediately 

after a single gavage dose of 480 mg/kg tetrachloroethylene in polyethoxylated vegetable oil (Warren et 

al. 1996).  The rats were trained for 2–3 weeks prior to dosing to press a lever for a milk reward. Rats 

exposed to 480 mg/kg tetrachloroethylene exhibited suppressed (4/6 rats) or nonexistent (2/6) operant 

responses after dosing.  In the four rats that did respond, response rates returned to normal levels 15– 

30 minutes postdosing.  No effect on operant response was noted in the group exposed to 120 mg/kg 

tetrachloroethylene (Warren et al. 1996).  

A single intermediate-duration study of neurological effects in animals is available. Chen et al. (2002) 

observed impairments in nociception (increased latency to tail withdrawal from hot water and response 

latency to hot plate exposure) as well as an increased threshold for seizure initiation when male Sprague-

Dawley rats were given gavage doses of 5 or 50 mg/kg/day tetrachloroethylene for 8 weeks 

(5 days/week).  At the higher dose of 50 mg/kg/day, reduced locomotor activity was also observed. 

In a chronic bioassay, microscopic examination of the brains of rats and mice exposed by gavage to 

tetrachloroethylene at doses that resulted in increased mortality did not reveal any adverse effects (NCI 

1977). 

The LOAELs for nervous system effects identified in human and animal studies and the NOAEL in rats 

are indicated in Table 3-3 and Figure 3-2. 

3.2.2.5  Reproductive Effects 

No studies were located regarding reproductive effects in humans after oral exposure to 

tetrachloroethylene; data in animals are very limited. 

Resorptions were significantly increased in rats treated by gavage with tetrachloroethylene in corn oil at 

doses of 900 and 1,200 mg/kg/day on gestation days 6–19 (Narotsky and Kavlock 1995).  At 
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1,200 mg/kg/day, no live pups were delivered by gestation day 22, while the number at 900 mg/kg/day 

(5.2±1.5 pups/litter) was significantly (p<0.01) reduced compared to controls (7.7±0.7 pups/litter).  The 

implantation sites required ammonium sulfide staining for detection, suggesting that the embryos died 

early in the treatment period.  The 900 mg/kg/day dose also resulted in maternal ataxia and body weight 

gain approximately 25% less than controls. 

In a chronic bioassay, microscopic examination of the testes and ovaries of rats and mice exposed by 

gavage to tetrachloroethylene at doses that resulted in increased mortality did not reveal any adverse 

effects (NCI 1977). 

The serious LOAEL for reproductive effects in rats is recorded in Table 3-3 and plotted in Figure 3-2. 

3.2.2.6  Developmental Effects 

A large study of was conducted comparing birth weights and gestational ages of infants born to mothers 

who had lived in a Marine base housing area (Tarawa Terrace at Camp Lejeune, North Carolina) with a 

contaminated water supply well with infants of other housing areas on the base that did not receive 

contaminated water (Sonnenfeld et al. 2001).  The well contamination was believed to originate from a 

dry cleaning facility near the well. Contaminants measured during the winter of 1985 in the affected 

supply well (not at the tap) at Camp Lejeune, North Carolina included tetrachloroethylene (1,580 ppb), 

trichloroethylene (57 ppb), 1,2-dichloroethylene (92 ppb), and vinyl chloride (27 ppb); the well was shut 

down shortly thereafter. Birth weight and gestational age were obtained from the review of birth 

certificates of 6,117 exposed and 5,681 unexposed infants, and mean difference in birth weight, OR for 

small-for-gestational-age, and preterm birth were assessed. The mean difference in birth weight was 

-26 g (90% CI -43–-9) when exposed and unexposed infants were compared.  The OR for small-for-

gestational age was 1.2 (90% CI 1.0–1.3).  Similar results (data not reported) were observed after 

adjustment for potential confounders.  No clear indication of an effect on preterm birth was seen.  When 

the groups were stratified on maternal age and on number of prior fetal losses, a larger effect was seen 

among mothers ≥35 years old and among mothers who had two or more prior fetal losses; adjusted birth 

weight differences were -236 and -104 g, respectively, and adjusted ORs for small-for-gestational age 

were 2.1 and 2.5, respectively.  The study authors suggested that the findings included a weak association 

between tetrachloroethylene exposure and small-for-gestational age, but no association with preterm birth 

or mean birth weight (Sonnenfeld et al. 2001). Limitations of the study include potential for exposure 

misclassification due to limited water sampling data, intermittent well use, and lack of information on 
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water use habits among exposed persons, as well as lack of control for potential confounders including 

maternal smoking and maternal height. 

Aschengrau et al. (2008) examined birth weight and gestational duration among 1,353 exposed and 

772 nonexposed members of the Cape Cod cohort exposed to tetrachloroethylene in drinking water (see 

Section 3.2.2.4 for further description of the cohort and exposure conditions).  No association between 

exposure and birth weight or gestational duration was observed. A later study of congenital anomalies in 

the Cape Cod cohort (Aschengrau et al. 2009) observed increases in the adjusted ORs for all anomalies 

(OR 1.5; 95% CI 0.9–2.5) and specifically for neural tube defects (OR 3.6; 95% CI 0.8–14.0) and oral 

clefts (OR 3.2; 95% CI 0.7–15.0).  The study authors noted that the results were limited by the small 

numbers of children with anomalies and the fact that the anomalies were identified by maternal report and 

not independently verified. 

In the Woburn, Massachusetts, study of residents exposed to drinking water contaminated with solvents, 

including 21 ppb tetrachloroethylene, there was a suggestion that eye/ear anomalies and central nervous 

system/chromosomal/oral cleft anomalies were associated with exposure (Lagakos et al. 1986).  However, 

several scientists have questioned the biological relevance of grouping these anomalies for purposes of 

statistical analysis (Lagakos et al. 1986).  The association between birth outcome and drinking water 

contamination has also been examined in 75 towns in New Jersey (Bove et al. 1995).  Based on four 

cases, oral cleft defects were increased (OR 3.54; 90% CI 1.28–8.78) in the group with the highest 

exposure (>10 ppb).  Because of possible exposure misclassification and limits in the number of possible 

confounders that were examined (maternal occupational exposures, smoking, medical history, height, 

gestational weight gain), the study authors note that this study alone cannot resolve whether some of the 

relationships between drinking water contaminants and adverse outcome are causal or a result of chance 

or bias. 

Increased numbers of postnatal deaths, and increased micro/anophthalmia were observed in offspring of 

rats treated by gavage with 900 mg/kg/day tetrachloroethylene in corn oil on gestation days 6–19 

(Narotsky and Kavlock 1995).  This dose also resulted in maternal toxicity (ataxia and body weight gain 

approximately 25% less than controls).  On postnatal day 6, the number of pups/litter that were alive was 

7.7±0.7 in the control litters, and 4.9±1.2 in the 900 mg/kg/day group (p<0.001; Narotsky and Kavlock 

1995).  Additional data about malformations were not provided. 
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In a study regarding late stages of nervous system development, male mouse pups were treated by gavage 

with tetrachloroethylene at 5 and 320 mg/kg/day for 7 days beginning at 10 days of age (Fredriksson et al. 

1993).  Throughout the dosing period, no clinical signs of toxicity were observed.  Measures of activity 

(locomotion, rearing, and total activity) were completed in mice at 17 and 60 days of age.  No significant 

effects were observed in mice at 17 days of age, while at 60 days of age, a significant increase in 

locomotion (p<0.05 or <0.01) and total activity (p<0.01) was observed at both doses. 

All reliable LOAELs values identified in rats and mice are recorded in Table 3-3 and plotted in 

Figure 3-2. 

3.2.2.7  Cancer 

The epidemiological data on cancers among humans exposed to tetrachloroethylene orally is much more 

limited than the inhalation data due to small numbers of studies and cohort sizes, as well as potential 

confounding by coexposure to other chlorinated solvents. Animal cancer bioassays were conducted in 

rats and mice exposed to tetrachloroethylene by gavage (NCI 1977); data in rats were not considered 

adequate for evaluation of carcinogenesis in rats due to premature mortality (NCI 1977), but 

hepatocellular tumors were observed in mice of both sexes.  

An early case-control study was completed to examine the relationship between bladder cancer, kidney 

cancer, and leukemia among residents of Cape Cod with exposure to tetrachloroethylene in public 

drinking water (see Section 3.2.2.4 for description of the exposure circumstances and how exposure was 

assessed) (Aschengrau et al. 1993).  Exposure was estimated as a relative delivered dose using a model 

described by Webler and Brown (1993).  Based on a small number of cancer patients with 

tetrachloroethylene exposure (n=7), the investigators indicated that there was a tendency for an increased 

risk of leukemia among patients (n=2) who were most highly exposed. The small number of subjects 

limits the conclusions that can be drawn from this study.  

Later studies of the Cape Cod cohort examined the risk of breast cancer (Aschengrau et al. 1998, 2003; 

Gallagher et al. 2011; Vieira et al. 2005).  Studies by Aschengrau et al. (1998, 2003) examined cases of 

breast cancer diagnosed between 1983 and 1986 (n=258 cases and 686 controls from the same towns and 

matched on demographics) and between 1987 and 1993 (n=672 cases and 616 controls).  When the data 

from the two studies were combined, an increased OR for breast cancer among women whose relative 

tetrachloroethylene dose was above the 75th percentile, when compared with unexposed women (adjusted 
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ORs of 1.6–1.9, depending on the number of years assumed for latency in the analysis). When an 

alternative exposure estimate took the reported water use habits of the participants into consideration 

(consumption of bottled water, shower and bathing frequency and duration) to estimate personal dose 

(Vieira et al. 2005), the results were similar to those obtained with the relative dose model originally used 

by Aschengrau (1998, 2003). Another update of the exposure assessment performed by Gallagher et al. 

(2011) added the use of water distribution modeling (using EPANET 2.0) and data smoothing to examine 

nonlinear associations between exposure and breast cancer. The revised exposure assessment yielded 

adjusted ORs of 1.0–1.7 for women in the highest exposure group (>90th percentile) for 0–19 years of 

latency; all of the CIs included 1.0. Taken together, the studies of the Cape Cod population suggest the 

possibility of a modest association between tetrachloroethylene in drinking water and breast cancer. 

Paulu et al. (1999) presented the results of the case-control study for cancers other than breast cancer 

(including lung, brain, pancreas, and colon-rectum) in the Cape Cod population. No statistically 

significant associations were noted for any cancer type when comparing exposed and nonexposed 

participants, although nonsignificant increases in the OR for colon-rectum cancer were noted.  A 

statistically significant increased OR for lung cancer (adjusted for confounders including smoking and 

gender) was noted among those subjects whose exposure level exceeded the 90th percentile (ORs ranged 

from 3.3 to 19.8, depending on the years of latency assumed). 

In a study in New Jersey, tetrachloroethylene contamination of the drinking water was associated with an 

increased incidence of non-Burkitt’s high-grade non-Hodgkin’s lymphoma in females (Cohn et al. 1994).  

Many of the water supplies were also contaminated with trichloroethylene, making it difficult to assess 

the relative contribution of each chemical. The investigators also noted that the conclusions of their study 

are limited by potential misclassification of exposure because of lack of information on individual long-

term residence and water consumption. 

After trichloroethylene (212 μg/L) and tetrachloroethylene (180 μg/L) were identified in the drinking 

water supply of two towns in Finland, the incidence rates of total cancer, liver cancer, non-Hodgkin’s 

lymphoma, multiple myeloma, and leukemia were compared with the rest of the country (Vartianinen et 

al. 1993).  No significant difference was found.  This study is limited in that people who might not have 

been exposed were included in the exposed group, and it is not clear how long the people were exposed.  

The contamination was discovered in 1992, and new sources of drinking water were supplied shortly after 

the discovery. 
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A controversial study of a population in Woburn, Massachusetts, reported a potential association between 

ingestion of drinking water contaminated with solvents and increased risk of childhood leukemia, 

particularly acute lymphocytic leukemia (Lagakos et al. 1986).  However, numerous investigators 

(MacMahon 1986; Prentice 1986; Rogan 1986; Swan and Robins 1986) have evaluated the data and 

identified a number of shortcomings in the study.  In addition, this population had coexposure to 

trichloroethylene and other solvents, so identification of effects attributable to tetrachloroethylene is not 

possible. 

Cancer has been reported in experimental animals after oral exposure to tetrachloroethylene.  Osborne-

Mendel rats and B6C3F1 mice of each sex were exposed to tetrachloroethylene in corn oil by gavage for 

78 weeks, followed by observation periods of 32 weeks (rats) and 12 weeks (mice) in an NCI (1977) 

carcinogenicity bioassay.  Because of numerous dose adjustments during the study, doses had to be 

represented as TWAs.  TWA doses were 471 and 941 mg/kg/day for male rats, 474 and 949 mg/kg/day 

for female rats, 536 and 1,072 mg/kg/day for male mice, and 386 and 772 mg/kg/day for female mice. 

The elevated early mortality, which occurred at both doses in both sexes of rats and mice, was related to 

compound-induced toxic nephropathy (see Section 3.2.2.2).  Because of reduced survival, this study was 

not considered adequate for evaluation of carcinogenesis in rats.  Statistically significant increases in 

hepatocellular carcinomas occurred in the treated mice of both sexes.  Incidences in the untreated control, 

vehicle control, low-dose, and high-dose groups were 2/17, 2/20, 32/49, and 27/48, respectively, in male 

mice, and 2/20, 0/20, 19/48, and 19/48, respectively, in female mice.  Study limitations included control 

groups smaller than treated groups (20 versus 50), numerous dose adjustments during the study, early 

mortality related to compound-induced toxic nephropathy (suggesting that a maximum tolerated dose was 

exceeded), and pneumonia due to intercurrent infectious disease (murine respiratory mycoplasmosis) in 

both rats and mice. 

Because of its carcinogenic activity in mouse liver, tetrachloroethylene has been tested for initiating and 

promoting activity in a rat liver foci assay.  Tetrachloroethylene administered by gavage in corn oil at 

995 mg/kg/day did not exhibit initiating activity as indicated by an increase in GGT-positive type I altered 

foci.  Tetrachloroethylene did promote the appearance of type II altered foci, both in the presence and 

absence of an initiator (in this case, diethylnitrosamine) (Story et al. 1986). 

All reliable CELs are recorded in Table 3-3 and plotted in Figure 3-2. 
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3.2.3 Dermal Exposure 

3.2.3.1  Death 

No studies were located regarding death in humans after dermal exposure to tetrachloroethylene. 

All five rabbits treated with a single dermal dose of 3,245 mg/kg tetrachloroethylene that was occluded 

for 24 hours survived (Kinkead and Leahy 1987).  Additional studies regarding death following dermal 

exposure in animals were not located. 

3.2.3.2  Systemic Effects 

No studies were located regarding respiratory, gastrointestinal, hematological, or musculoskeletal effects 

in humans or animals after dermal exposure to tetrachloroethylene. 

Cardiovascular Effects. Hypotension was reported in a male laundry worker found lying in a pool 

of tetrachloroethylene (Hake and Stewart 1977).  In this case, the worker was exposed to 

tetrachloroethylene by both inhalation and dermal routes of exposure, and the exact contribution of 

dermal exposure is unknown.  The patient fully recovered from the effects of tetrachloroethylene. 

No studies were located regarding cardiovascular effects in animals after dermal exposure to 

tetrachloroethylene. 

Hepatic Effects. Elevated serum enzymes (not further described) indicative of mild liver injury were 

observed in an individual found lying in a pool of tetrachloroethylene (Hake and Stewart 1977).  

Exposure in this case was by both the inhalation and dermal routes, and the exact contribution of dermal 

exposure is unknown. 

No studies were located regarding hepatic effects in animals after dermal exposure to tetrachloroethylene. 

Renal Effects. Proteinuria, which lasted for 20 days, was observed in an individual found lying in a 

pool of tetrachloroethylene (Hake and Stewart 1977).  Exposure in this case was by both the inhalation 

and dermal routes, and the exact contribution of dermal exposure is unknown. 

No studies were located regarding renal effects in animals after dermal exposure to tetrachloroethylene. 
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Dermal Effects. Five volunteers placed their thumbs in beakers of tetrachloroethylene for 30 minutes 

(Stewart and Dodd 1964).  Within 5–10 minutes, all subjects had a burning sensation.  After the thumb 

was removed from the solvent, the burning decreased during the next 10 minutes.  Marked erythema, 

which cleared 1–2 hours after exposure, was present in all cases.  Chemical burns characterized by severe 

cutaneous erythema, blistering, and sloughing have resulted from prolonged (more than 5 hours) 

accidental contact exposure to tetrachloroethylene used in dry cleaning operations (Hake and Stewart 

1977; Ling and Lindsay 1971; Morgan 1969). 

Rabbits were exposed dermally to pure tetrachloroethylene (2 mL/kg body weight), which was covered 

by an occlusive dressing for 24 hours to prevent evaporation of the chemical.  The animals did not 

develop toxic signs, and skin lesions were not reported (Kinkead and Leahy 1987). 

Ocular Effects. Intense ocular irritation has been reported in humans after acute exposure to 

tetrachloroethylene vapor at concentrations >1,000 ppm (Carpenter 1937; Rowe et al. 1952).  Vapors of 

tetrachloroethylene at 5 or 20 ppm were irradiated along with nitrogen dioxide in an environmental 

chamber in order to simulate the atmospheric conditions of Los Angeles County.  These conditions did 

not produce appreciable eye irritation in volunteers exposed to the simulated atmosphere (Wayne and 

Orcutt 1960). 

No studies were located regarding ocular effects in animals after dermal exposure to tetrachloroethylene 

including direct application to the eye. 

3.2.3.3  Immunological and Lymphoreticular Effects 

No studies were located regarding immunological and lymphoreticular effects in humans or animals 

following dermal exposure to tetrachloroethylene. 

3.2.3.4  Neurological Effects 

A male laundry worker found lying in a pool of tetrachloroethylene was in a coma (Hake and Stewart 

1977).  The exposure to tetrachloroethylene in this case was by both the inhalation and dermal routes, and 

the exact contribution of dermal exposure is unknown.  The patient fully recovered from the effects of 

tetrachloroethylene. 
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No studies were located regarding neurological effects in animals after dermal exposure to tetrachloro-

ethylene. 

3.2.3.5  Reproductive Effects 

No studies were located regarding reproductive effects in humans or animals after dermal exposure to 

tetrachloroethylene. 

3.2.3.6  Developmental Effects 

No studies were located regarding developmental effects in humans or animals after dermal exposure to 

tetrachloroethylene. 

3.2.3.7  Cancer 

No studies were located regarding cancer in humans after dermal exposure to tetrachloroethylene. 

In a mouse skin initiation-promotion assay, tetrachloroethylene applied at amounts of 18 or 54 mg did not 

produce skin tumors over a 440–594-day study duration when applied either as an initiator or a promoter 

(Van Duuren et al. 1979). 

3.2.4 Other Routes of Exposure 

3.2.4.1 Immunological and Lymphoreticular Effects 

Seo et al. (2008b, 2012) showed that tetrachloroethylene, administered intraperitoneally at 0.1 mg/kg in 

rats or ≥0.01 mg/kg in mice, significantly enhanced the PCA reaction in rats.  

3.3  GENOTOXICITY 

The results of in vitro and in vivo genotoxicity studies are summarized in Tables 3-4 and 3-5, 

respectively. Data from these assays indicate that tetrachloroethylene has the potential to be genotoxic. 

The lymphocytes of humans occupationally exposed to tetrachloroethylene showed no evidence of 

permanent chromosomal damage (sister chromatid exchange or chromosomal aberrations); however, 

DNA damage was observed in at least one assay (Tucker et al. 2011).  In other in vivo assays (in rats, 
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Table 3-4.  Genotoxicity of Tetrachloroethylene In Vitro 

Results 
With Without 

Species (test system) End point activation activation Reference 
Prokaryotic organisms: 

Salmonella typhimurium Gene mutation – – Bartsch et al. 1979; Emmert 
et al. 2006; Haworth et al. 
1983; NTP 1986; Watanabe 
et al. 1998 

Escherichia coli Gene mutation – – Greim et al. 1975; 
Henschler 1977 

Lower eukaryotic system: 
Saccharomyces cerevisiae Gene mutation – – Bronzetti et al. 1983; Callen 

et al. 1980 
S. cerevisiae Recombination (+/–) – Bronzetti et al. 1983; Callen 

et al. 1980; Koch et al. 1988 
Mammalian cells: 

Fisher rat embryo cells Cell transformation + NR Price et al. 1978 

BALB/C3T3 mouse cells – NR Tu et al. 1985 
– – NTP 1986 

Rat and mouse DNA damage – NR Costa and Ivanetich 1980 
hepatocyte (unscheduled DNA 

synthesis) 
Human fibroblast cells DNA damage (+/–) (+/–) NIOSH 1980 

(unscheduled DNA 
synthesis) 

Human lymphocytes DNA damage – – Hartman and Speit 1995 
Human lymphocytes Sister chromatid – – Hartman and Speit 1995 

exchange 
Chinese hamster ovary Sister chromatid – – NTP 1986 
cells exchange 
Human MCL-5 cells Micronucleus NR + White et al. 2001 
(metabolically enhanced) 
Chinese hamster lung Micronucleus – – Matsushima et al. 1999 
cells 
Chinese hamster ovary Micronucleus NT + Wang et al. 2001 
(CHO-K1) cells 

C = negative result; +/– = mixed results; + = positive result; DNA = deoxyribonucleic acid; NR = not reported; 
NT = not tested 
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Table 3-5.  Genotoxicity of Tetrachloroethylene In Vivo 

Species (test system) End point Results Reference 
Mammalian cells: 

Human lymphocytes Sister chromatid – Ikeda et al. 1980; Seiji et al. 
exchange 1990  

Human lymphocytes Chromosomal aberrations – Tucker et al. 2011  
Human lymphocytes DNA damage + Tucker et al. 2011  
Human leukocytes and DNA damage – Toraason et al. 2003  
urine 
Rat/lymphocytes, liver, DNA damage – Toraason et al. 1999  
urine  
Mouse DNA damage/induction of + Walles 1986  

single strand breaks  
Mouse/hepatocytes DNA damage +/– Cederberg et al. 2010  
Mouse/kidney DNA damage – Cederberg et al. 2010  
Mouse/binding to or DNA binding or alkylation – Schumann et al. 1980  
alkylation of liver DNA 
Rat/binding of rat kidney DNA binding or alkylation + Mazullo et al. 1987  
DNA  
Mouse/binding of mouse DNA binding or alkylation + Mazullo et al. 1987  
liver DNA 
Rat, mouse/genetic Germ cell chromosome – NIOSH 1980  
damage in germinal system damage  
Rat, mouse/altered sperm Mutation in germ cells (+/–) NIOSH 1980  
morphology 
Mouse/reticulocytes Micronucleus – Murakami and Horikawa 1995 
Mouse/reticulocytes, Micronucleus – Murakami and Horikawa 1995 
before partial hepatectomy 
Mouse/reticulocytes, after Micronucleus + Murakami and Horikawa 1995 
partial hepatectomy 

Hot-mediated assays: 
Drosophila melanogaster/ Gene mutation – NIOSH 1980; Valencia et al. 
sex-linked recessive lethal 1985  
mutation  
Rat bone marrow cells Chromosomal aberrations – NIOSH 1980  
Human lymphocytes Chromosomal aberrations – Ikeda et al. 1980  
D. melanogaster/sex-linked Gene mutation – NTP 1986  
recessive lethal mutation  

– = negative result; + = positive result; (+/–) = mixed results; DNA = deoxyribonucleic acid 
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mice, and Drosophila), mixed results were shown for gene mutation, DNA binding and/or damage, 

chromosomal aberrations, and induction of micronuclei.  An evaluation of the genotoxic potential of 

tetrachloroethylene in vitro suggests that tetrachloroethylene is unlikely to induce reverse mutations in 

Salmonella typhimurium; however, positive responses have been observed under some conditions 

(possibly due to metabolites and/or contaminants). Assays for chromosomal aberrations and DNA 

damage in mammalian cells have also shown mixed results, and most positive results required the 

presence of metabolic activation. 

Assays in humans following occupational exposure to tetrachloroethylene via inhalation have not 

provided definitive evidence for clastogenic effects (Table 3-5).  Increases in chromosome aberrations 

and sister chromatid exchanges were not detected in lymphocytes from 10 workers who were 

occupationally exposed to tetrachloroethylene (Ikeda et al. 1980).  The exposure concentrations for these 

workers were estimated to be between 10 and 220 ppm for 3 months to 18 years.  The small number of 

workers and the wide range of exposure concentrations and durations limit the generalizations that can be 

made from this study.  Twenty-seven workers exposed to an 8-hour TWA concentration of 10 ppm 

tetrachloroethylene were compared to unexposed occupational controls with respect to incidence of sister 

chromatid exchanges (Seiji et al. 1990).  Although the study authors had found no significant effect of 

cigarette smoking alone in either the exposed workers or the controls, the difference in sister chromatid 

exchange frequency between the exposed workers who smoked and the nonsmoking controls was 

statistically significant. The authors proposed a synergistic effect of chemical exposure and cigarette 

smoking.  The number of workers examined was small (12 smokers and 2 nonsmokers among the 

exposed men; 9 smokers and 3 nonsmokers among the controls). The lack of any effect of cigarette 

smoking alone on the frequency of sister chromatid exchange is somewhat surprising, as this is a 

recognized effect that is well documented in the literature (Hook 1982). 

In a study of 18 dry cleaning workers exposed to tetrachloroethylene at TWA concentrations >3.8 ppm 

for at least 1 year, no significant effect on the frequency of chromosome translocations in peripheral 

blood lymphocytes was observed in comparison to 18 control laundry workers (Tucker et al. 2011). 

Chromosomal damage was not significantly changed based on cigarette smoking or alcohol consumption.  

Evidence of transient chromosomal damage, namely increased frequencies of acentric fragments, was 

observed; TWA blood levels of tetrachloroethylene in dry cleaners significantly (p=0.0026) correlated 

with the frequency of these fragments.  Although the sample sizes are small, no acentric fragments were 

observed in unexposed laundry workers.  Using 8-hydroxydeoxyguanosine (8OHdG) as a marker for 

oxidative DNA damage and repair, Toraason et al. (2003) found no significant increase in DNA damage 
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in the leukocytes or urine of 18 dry cleaner workers (exposed to TWA concentration of tetrachloro-

ethylene of 3.8 ppm) compared to 20 laundry workers.  While there was an association between blood 

tetrachloroethylene levels and urinary 8OHdG (r=0.4661; p<0.044), there was no association between 

exposure indices and biomarkers after adjustments for age, body mass index, race, smoking status, and 

blood levels of antioxidants. 

In vivo animal assays likewise showed mixed results for the induction of DNA damage or micronucleus 

formation. In male CD-1 mice administered tetrachloroethylene at 1,000 or 2,000 mg/kg/day via gavage 

for 2 days, there was equivocal evidence for the induction of DNA damage (Cederburg et al. 2010).  In 

comet assays, a weak but significant and dose-related increase in tail intensity, but not tail moment, was 

reported in hepatocytes (p=0.041 in one-sided Jonckheere-Terpstra test); no significant effects associated 

with DNA damage were observed in the kidney.  Although the study authors classified the response in the 

liver as “positive,” these data, when analyzed in the context of biological relevance by the lab that 

conducted the experiment and by Lillford et al. (2010), Lovell (2010), and Struwe et al. (2011), were 

classified as “negative.”  The bases for classification of the response in the liver as negative included the 

small magnitude of the response, interanimal variability, the order of analysis of biological samples, 

responses that fell within the range of historical controls, and the lack of a statistical effect using other 

statistical tests (Dunnett’s test for pairwise comparisons). Although induction of single-strand breaks in 

mouse liver and kidney DNA (but not in lung DNA) following intraperitoneal injection of 4–8 mmol 

tetrachloroethylene/kg body weight was reported in one study (Walles 1986), Toraason et al. (1999) 

found no significant increase in oxidative DNA damage (using 8OHdG as a biomarker) in the livers of 

rats administered a single intraperitoneal injection of tetrachloroethylene at up to 1,000 mg/kg. With 

respect to micronucleus induction, a single intraperitoneal injection of tetrachloroethylene given to mice 

at doses up to 2,000 mg/kg did not increase micronuclei in reticulocytes or hepatocytes when mice were 

treated before partial hepatectomy (Murakami and Horikawa 1995). Micronuclei were increased in 

hepatocytes at 1,000 and 2,000 mg/kg when mice were treated after partial hepatectomy.  Additional in 

vivo studies showed no evidence of germ cell chromosomal damage and equivocal evidence of mutation 

in germ cells (positive in males, but not females, after one-time exposure only) of Sprague-Dawley rats 

exposed to tetrachloroethylene via inhalation for up to 5 days (NIOSH 1980). 

In a study by Schumann et al. (1980), no DNA binding was observed in B6C3F1 mice exposed to 

tetrachloroethylene a single time via the inhalation or oral route of exposure.  However, evidence of DNA 

binding of tetrachloroethylene in mouse liver and rat kidney was seen in experiments that utilized liver 

microsomes and the addition of glutathione transferases after a single intraperitoneal injection (Mazzullo 
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et al. 1987), providing some evidence that the glutathione metabolites of tetrachloroethylene may be 

mutagenic. 

A large number of studies of in vitro genotoxicity of tetrachloroethylene have been performed using 

prokaryotic, eukaryotic, and mammalian cells (Table 3-4). Most of the studies using the Ames test with 

S. typhimurium have indicated that tetrachloroethylene itself is not a mutagen (Bartsch et al. 1979; 

Emmert et al. 2006; Haworth et al. 1983; NTP 1986; Watanabe et al. 1998).  Several chlorinated aliphatic 

compounds identified in the spent liquor from the softwood kraft pulping process were found to be 

mutagenic (Kringstad et al. 1981).  Tetrachloroethylene was one of several compounds isolated that was 

shown to be mutagenic for S. typhimurium TA1535 without the addition of liver microsomes for 

metabolic activation.  In contrast, purified tetrachloroethylene was not mutagenic with or without 

exogenous metabolic activation.  However, preincubation of tetrachloroethylene with purified rat liver 

GSH S-transferases in the presence of GSH and rat kidney fraction resulted in the formation of the 

conjugate, S-(1,2,2-trichlorovinyl)glutathione, which was unequivocally mutagenic in the Ames test 

(Vamvakas et al. 1989).  Tetrachloroethylene oxide, an epoxide intermediate of tetrachloroethylene, was 

found to be mutagenic in bacterial studies (Kline et al. 1982). 

Studies of mutagenicity on Escherichia coli have been negative (Greim et al. 1975; Henschler 1977), as 

have been tests for mitotic recombination in yeast (Callen et al. 1980; Koch et al. 1988).  Mixed results 

were obtained in yeast when no metabolic activation was used in the experiments by Bronzetti et al. 

(1983).  Koch et al. (1988) postulated that the lack of mutagenicity of tetrachloroethylene was because of 

its highly toxic effects on cells and that lower doses would be required to demonstrate unequivocally the 

presence or absence of mutagenic effects. 

Direct effects on DNA by tetrachloroethylene have been investigated in vitro in several cell systems. 

Human fibroblasts were assayed for unscheduled DNA synthesis following exposure to tetrachloro-

ethylene, but the results were equivocal (NIOSH 1980).  This study is difficult to interpret because 

negative results were obtained using the higher concentrations, whereas the lower doses produced a weak 

positive response.  In addition, the positive control chemicals (N-methyl-N-nitro-N-nitrosoguanidine, 

benz[a]pyrene) produced only weak positive responses. Other investigators found no effects on the DNA 

of rat and mouse hepatocytes or human lymphocytes (Costa and Ivanetich 1980; Hartman and Speit 

1995).  Most data do not support a directly mutagenic effect of tetrachloroethylene itself.  The 

inconsistent results could be due to differences between tested species in metabolism or activation, 

protocol differences, or purity of the compound tested. 
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There are few data on clastogenic effects of tetrachloroethylene following in vitro exposure.  When 

human lymphocytes and Chinese hamster ovary cells were assayed for sister chromatid exchanges, no 

increase in frequency was found (Hartman and Speit 1995; NTP 1986). Mixed results have been reported 

for micronucleus induction in human lymphocytes and Chinese hamster cell lines. There was no 

significant induction of micronuclei in Chinese hamster lung cells following exposure to tetrachloro-

ethylene at up to 250 μg/mL in the presence or absence of metabolic activation (Matsushima et al. 1999).  

Wang et al. (2001) reported a dose-related, significant (p<0.001) increase in micronuclei in Chinese 

hamster ovary (CHO-K1) cells exposed to tetrachloroethylene at 63 ppm in a closed system.  A dose-

related increase (p<0.05) in micronuclei induction was likewise reported in human MCL-5 cells 

(metabolically enhanced to express human CYP enzymes) exposed to tetrachloroethylene at 

concentrations up to 2.0 mM (White et al. 2001).  Two assays of cell transformation in mouse cells 

treated with tetrachloroethylene were negative (NTP 1986; Tu et al. 1985).  However, Fischer rat embryo 

cells were transformed in the absence of metabolic activation (Price et al. 1978). 

3.4  TOXICOKINETICS 

Tetrachloroethylene is readily absorbed following inhalation and oral exposure as well as direct exposure 

to the skin.  Pulmonary absorption of tetrachloroethylene is dependent on the ventilation rate, the duration 

of exposure, and at lower concentrations, the proportion of tetrachloroethylene in the inspired air.  

Compared to pulmonary exposure, uptake of tetrachloroethylene vapor by the skin is minimal.  Once 

tetrachloroethylene is absorbed, its relatively high lipophilicity results in distribution to fatty tissue.  The 

fat:blood partition coefficient in humans is in the range of 125–159.  Because of its affinity for fat, 

tetrachloroethylene is found in milk, with greater levels in milk with a higher fat content. 

Tetrachloroethylene has also been shown to cross the placenta and distribute to the fetus. 

Regardless of the route of exposure, only 1–3% of the absorbed tetrachloroethylene is metabolized to 

trichloroacetic acid by humans, and the metabolism of tetrachloroethylene is saturable.  Compared to 

humans, rodents, especially mice, metabolize more tetrachloroethylene to trichloroacetic acid.  Geometric 

mean Vmax values for the metabolism of tetrachloroethylene of 13, 144, and 710 nmol/(minute/kg) have 

been reported for humans, rats, and mice, respectively.  Trichloroacetic acid produced from tetrachloro-

ethylene is excreted in the urine, and in humans, trichloroacetic acid excretion is linearly related to 

concentrations of tetrachloroethylene in air at levels up to about 50 ppm.  Unmetabolized tetrachloro-
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ethylene is exhaled.  The half-lives of tetrachloroethylene in vessel-rich tissue, muscle, and adipose tissue 

of humans have been estimated to be 12–16, 30–40, and 55 hours, respectively. 

A PBPK model for tetrachloroethylene toxicokinetics in mice, rats, and humans was published in Chiu 

and Ginsberg (2011); this model built upon previous PBPK models for tetrachloroethylene and for the 

related compound trichloroethylene.  

3.4.1 Absorption 

3.4.1.1  Inhalation Exposure 

The primary route of human exposure to tetrachloroethylene is inhalation.  In humans, tetrachloroethylene 

is readily absorbed into the blood through the lungs.  The blood:gas partition coefficient of tetrachloro-

ethylene in humans exposed for 4–6 hours to concentrations between 1 and 70 ppm ranged between 

9.4 and 12.54 during exposure and between 15.74 and 23.65 after exposure (Chiu et al. 2007; Monster et 

al. 1979).  Estimates of human blood:air partition coefficients from in vitro methods are shown in 

Table 3-6; in large part, these estimates are consistent with the in vivo values. In vitro blood:gas partition 

coefficients obtained by Mahle et al. (2004) suggest no gender- or age-related differences in partitioning 

between males and females or between pediatric and adult human blood.  

Available data suggest that 64–100% of inhaled tetrachloroethylene is taken up from the lungs (Chiu et al. 

2007; Monster et al. 1979).  Pulmonary uptake of tetrachloroethylene is proportional to ventilation rate, 

duration of exposure, and at lower atmospheric concentrations of tetrachloroethylene, concentration of 

tetrachloroethylene in the inspired air (Hake and Stewart 1977; Stewart et al. 1981).  In addition, a study 

of male volunteers showed higher total uptake of inhaled tetrachloroethylene with higher lean body mass; 

minute volume and adipose tissue did not influence uptake (Monster et al. 1979).  

The rate of tetrachloroethylene uptake by the lungs is initially high, but decreases during exposure 

(Monster et al. 1979); this pattern is common for lipophilic compounds. The concentration of 

tetrachloroethylene in the venous blood of six male volunteers peaked near the end of a 6-hour exposure 

to 1 ppm, and declined thereafter (Chiu et al. 2007).  

In another study (Pezzagno et al. 1988), 15 volunteers were exposed to tetrachloroethylene during periods 

of rest and during periods of rest alternated with periods of exercise. The experiments were designed to 

assess the relationship between pulmonary uptake and urinary concentration of tetrachloroethylene, and 
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Table 3-6.  Partition Coefficients for Tetrachloroethylene in Mice, Rats, Dogs, and  
Humans  

Partition 
coefficientsa Mouse Rat Dog Human Methodb Reference 
Blood/air 16.9 18.9 10.3 Vial equilibration Ward et al. 1988 
Blood/air 21.5 11.6 Smear method Gearhart et al. 1993 
Blood/air 33.5 19.8 Smear method Byczkowski and Fisher 1994 
Blood/air 19.8 Intraarterial Dallas et al. 1994b 

dosing 
Blood/air 19.6 40.5 Oral dosing Dallas et al. 1994a 
Blood/air 16.67 Vial equilibration Fisher et al. 1997 
Blood/air Vial equilibration Mahle et al. 2004 
males 12.8 15.8 
females 15.3 

Liver/air 70.3 70.3 70.3 Vial equilibration Ward et al. 1988 
Liver/air 62 Vial equilibration Gearhart et al. 1993 
Liver/air 48.8 50.2 61.1 Smear method Gearhart et al. 1993 
Liver/air 33.5 Vial equilibration Mahle et al. 2004 
Fat/air 2,060 2,300 1,638 Vial equilibration Ward et al. 1988 
Fat/air 1,237 Vial equilibration Gearhart et al. 1993 
Fat/air 1,510 1,437 1,450 Smear method Gearhart et al. 1993 
Fat/air 1,474 Vial equilibration Mahle et al. 2004 
Vessel- 70.3 70.3 70.3 Vial equilibration Ward et al. 1988 
rich/air 
Muscle/air 20.0 20.0 20.0 Vial equilibration Ward et al. 1988 
Muscle/air 18.1 Vial equilibration Gearhart et al. 1993 
Muscle/air 79.1 21.7 70.5 Smear method Gearhart et al. 1993 
Muscle/air 25.0 Vial equilibration Mahle et al. 2004 
Kidney/air 51.7 Vial equilibration Gearhart et al. 1993 
Kidney/air 79.1 51.3 58.6 Smear method Gearhart et al. 1993 
Kidney/air 30.6 Vial equilibration Mahle et al. 2004 
Brain/air 38.6 Vial equilibration Mahle et al. 2004 
Milk/air 59.27 Vial equilibration Fisher et al. 1997 
Liver/blood 2.3 5.28 Smear method Gearhart et al. 1993 
Liver/blood 1.9 6.83 Smear method Byczkowski and Fisher 1994 
Liver/blood 5.3 Intraarterial Dallas et al. 1994b 

dosing 
Liver/blood 5.0 2.4 Oral dosing Dallas et al. 1994a 
Fat/blood 70.4 125 Smear method Gearhart et al. 1993 
Fat/blood 42.4 159 Smear method Byczkowski and Fisher 1994 
Fat/blood 152 Intraarterial Dallas et al. 1994b 

dosing 
Fat/blood 150.5 71.4 Oral dosing Dallas et al. 1994a 
Muscle/blood 3.69 6.11 Smear method Gearhart et al. 1993 
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Table 3-6.  Partition Coefficients for Tetrachloroethylene in Mice, Rats, Dogs, and  
Humans  

Partition 
coefficientsa Mouse Rat Dog Human Methodb Reference 
Muscle/blood	 3.0 

Muscle/blood 2.4 2.4 
Kidney/blood 2.3 
Kidney/blood 4.5 

Kidney/blood 3.2 2.1 
Lung/blood 2.5 
Lung/blood 1.9 1.3 
Brain/blood 4.4 

Brain/blood 4.1 4.1 
Heart/blood 2.7 

Heart/blood 2.4 2.4 
Milk/blood 12 
Slowly 0.93 
perfused/ 
blood 
Rapidly 1.7 
perfused/ 
blood 
Perinatal/pediatric (pups, infants, children) 

Blood/air 24.3 
Blood/air 
males 15.1  
females 15.8  

Liver/air  
males 42.2  
females 40.0  

Fat/air  
males 945.0  
females 1,014  

Muscle/air  
males 95.1  
females 126.7  

Kidney/air  
males 31.8  
females 30.6  

Brain/air  
males 28.9  
females 29.7  

Intraarterial 
dosing 
Oral dosing 

5.1 Smear method 
Intraarterial 
dosing 
Oral dosing 
Intraarterial 
Oral dosing 
Intraarterial 
dosing 
Oral dosing 
Intraarterial 
dosing 
Oral dosing 

2.80 Smear method 
7.8 Smear method 

6.8	 Smear method 

8	 Smear method 
Vial equilibration 

15.7 
15.7 

Vial equilibration 

Vial equilibration 

Vial equilibration 

Vial equilibration 

Vial equilibration 

Dallas et al. 1994b 

Dallas et al. 1994a 
Gearhart et al. 1993 
Dallas et al. 1994b 

Dallas et al. 1994a 
Dallas et al. 1994b 
Dallas et al. 1994a 
Dallas et al. 1994b 

Dallas et al. 1994a 
Dallas et al. 1994b 

Dallas et al. 1994a 
Byczkowski and Fisher 1994 
Byczkowski and Fisher 1994 

Byczkowski and Fisher 1994 

Byczkowski and Fisher 1994 
Mahle et al. 2004 

Mahle et al. 2004 

Mahle et al. 2004 

Mahle et al. 2004 

Mahle et al. 2004 

Mahle et al. 2004 
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Table 3-6.  Partition Coefficients for Tetrachloroethylene in Mice, Rats, Dogs, and  
Humans  

Partition 
coefficientsa Mouse Rat Dog Human Methodb Reference 

Other 4.5 6.6 Smear method Byczkowski and Fisher 1994 
tissues/ 
blood 

Aged/elderly 
Blood/air 20.9 Vial equilibration Mahle et al. 2004 
Liver/air 65.9 Vial equilibration Mahle et al. 2004 
Fat/air 2,002 Vial equilibration Mahle et al. 2004 
Muscle/air 60.4 Vial equilibration Mahle et al. 2004 
Kidney/air 37.7 Vial equilibration Mahle et al. 2004 
Brain/air 58.3 Vial equilibration Mahle et al. 2004 

aDetermined in tissue from adults except as noted 
bExamples of partition coefficients for tetrachloroethylene determined by four methods:  

(1) vial equilibration method: tetrachloroethylene was added to a closed vial containing blood or tissue and 
partitioning was determined by estimating the amount of chemical that disappeared from the head space after 
equilibration at 37ºC. 
(2) smear method (modification of the vial method): homogenized tissue was smeared onto the inside of a vial. 
(3) intraarterial dosing: rats were given a single bolus injection of tetrachloroethylene through an arterial cannula. 
After treatment, groups of four rats were sacrificed at 1, 5, 10, 15, 30, and 60 minutes and at 2, 4, 6, 12, 36, 48, 
and 72 hours after dosing. 
(4) oral dosing:rats and dogs were given a single oral dose of tetrachloroethylene.  After treatment, groups of four 
rats were sacrificed at 1, 5, 10, 15, 30, and 60 minutes, and 2, 4, 6, 12, 8, 36, 48, and 72 hours after dosing, and 
groups of three dogs were sacrificed 1, 4, 12, 24, 48, and 72 hours after dosing. 
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between pulmonary uptake and ventilation and/or retention of the chemical.  Urinary concentration of 

tetrachloroethylene was positively correlated with uptake of the chemical.  The retention index decreased 

with increasing ventilation at rest and during exercise.  The urinary concentration of tetrachloroethylene 

was ventilation and retention index-dependent, increasing when either of these two parameters increased. 

In the same study, a group of workers occupationally exposed to tetrachloroethylene (occupation not 

specified) were also monitored to determine if urinary concentration of tetrachloroethylene correlated 

with environmental exposure.  A close relationship between the environmental TWA concentration and 

urinary concentration after a 4-hour exposure was found.  These results suggest that physical activity 

affects the absorption of tetrachloroethylene and that these variations in absorption are reflected in urinary 

concentrations of the chemical. 

Inhalation experiments in animals also indicate that tetrachloroethylene is readily absorbed through the 

lungs into the blood.  Total recovery of radioactivity from expired air and urine was 90–95% when 

measured up to 72 hours after male Sprague-Dawley rats were exposed for 6 hours to 10 or 600 ppm 

tetrachloroethylene (Pegg et al. 1979).  Dallas et al. (1994c) examined the uptake of tetrachloroethylene in 

Sprague-Dawley rats during nose-only exposure to tetrachloroethylene at 50 or 500 ppm for 3 hours.  

Near steady-state breath concentrations in exhaled air were achieved within about 20 minutes and were 

proportional to concentration (2.1–2.4 μg/mL at 500 ppm and 0.2–0.22 μg/mL at 50 ppm).  The total 

uptake of tetrachloroethylene during the 3-hour exposure was 79.9 mg/kg at 500 ppm and 11.2 mg/kg at 

50 ppm, indicating that cumulative uptake from the lungs was not proportional to inhaled concentration, 

possibly as a consequence of saturable metabolism (see Section 3.4.3).  

3.4.1.2  Oral Exposure 

Tetrachloroethylene was found in the blood of a 6-year-old boy who ingested 12–16 g of the compound, 

indicating that tetrachloroethylene is absorbed following oral exposure in humans (Koppel et al. 1985). 

The blood tetrachloroethylene level was 21.5 μg/mL 1 hour after ingestion. 

Results from several studies (Dallas et al. 1994a, 1995; Frantz and Watanabe 1983; Pegg et al. 1979; 

Schumann et al. 1980) indicate that tetrachloroethylene is rapidly and virtually completely absorbed 

following oral administration to rats, mice, and dogs.  Recovery of tetrachloroethylene from expired air 

and urine was 90.5–95% (up to 72 hours postdosing) in Sprague-Dawley rats given a single gavage dose 

of 1 or 500 mg/kg tetrachloroethylene in corn oil (Pegg et al. 1979).  The peak blood tetrachloroethylene 

concentration of 40 μg/mL was measured 1 hour after dosing at 500 mg/kg tetrachloroethylene (Pegg et 
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al. 1979); the analytical technique used lacked the sensitivity to precisely measure blood levels following 

administration of 1 mg/kg tetrachloroethylene.  In Sprague-Dawley rats and Beagle dogs given a single 

oral dose of tetrachloroethylene (10 mg/kg in polyethylene glycol 400) by gavage, the absorption 

constants were estimated to be 0.025/minute for rats and 0.34/minute for dogs (Dallas et al. 1994a).  

Maximum blood concentrations of tetrachloroethylene were reached 20–40 and 15–30 minutes in rats and 

dogs, respectively, after a single oral dose of tetrachloroethylene (1, 3, or 10 mg/kg) (Dallas et al. 1994a). 

3.4.1.3  Dermal Exposure 

Dermal absorption of tetrachloroethylene may occur with exposure to the vapor form as well as the liquid 

form.  When volunteers’ forearms and hands were exposed to tetrachloroethylene vapor (6.68 mmol/L) in 

a dynamic exposure chamber for 20 minutes, the concentration of tetrachloroethylene in exhaled air 

peaked approximately 45 minutes after exposure began (Kezic et al. 2000). The study authors estimated 

the tetrachloroethylene skin permeation rate to be 0.054 cm/hour.  Dermal and pulmonary absorption of 

tetrachloroethylene vapor was compared by exposing subjects to the vapor (600 ppm) after they had been 

fitted with a full-facepiece respirator to prevent inhalation (Riihimaki and Pfaffli 1978).  After an 

exposure period of 3.5 hours, absorption of tetrachloroethylene by the dermal route was found to be 1% 

of that expected had no respirator been worn. 

Animal studies also indicate that dermal uptake of tetrachloroethylene following vapor exposure is 

minimal.  For example, the skin absorption rate of tetrachloroethylene in nude Balb/cAnNCrj mice 

exposed to 200 ppm while wearing respirators was 0.002 mg/cm2/hour (Tsuruta 1989).  Skin absorption 

of tetrachloroethylene occurred by passive diffusion as defined by Fick’s law and increased to 0.007 and 

0.02 mg/cm2/hour following exposures of 1,000 and 3,000 ppm, respectively.  Tetrachloroethylene 

exposure (12,500 ppm) of F344 rats that were wearing respirators, and whose fur was closely clipped, 

indicated that <10% of a mixed inhalation dermal exposure to tetrachloroethylene vapor was taken up by 

the skin (McDougal et al. 1990). 

Dermal uptake of liquid tetrachloroethylene may be enhanced by its lipophilic properties; lipophilic 

compounds may lead to defatting of the skin and disruption of the stratum corneum, increasing 

absorption.  Dermal flux of neat liquid tetrachloroethylene was estimated to be 69 nmol/cm2/minute in 

volunteers when each person’s forearm skin (27 cm2) was exposed to liquid tetrachloroethylene for 

3 minutes (Kezic et al. 2001).  The maximal rate of absorption, estimated based on measurements of 

tetrachloroethylene in expired air, occurred 20 minutes after the exposure began. Dermal absorption of 
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tetrachloroethylene in liquid form has also been measured by immersing one thumb of experimental 

subjects (about 0.1% of the total body surface area) into a liquid sample (99% pure tetrachloroethylene) 

and then measuring the concentration of tetrachloroethylene in the exhaled air (Stewart and Dodd 1964).  

A peak concentration of 0.31 ppm in exhaled air was reached after 40 minutes of exposure. Subjects in 

this study exhibited erythema and reported a burning sensation, indicating injury to the skin surface. 

Application of undiluted tetrachloroethylene to the shaved backs of guinea pigs (strain not specified) 

resulted in blood concentrations of 1.1 μg/mL at the end of 30 minutes of exposure and 0.63 μg/mL at the 

end of 6 hours of exposure (Jakobson et al. 1982). The peak blood concentration of ~1.5 μg/mL 

tetrachloroethylene occurred approximately 30 minutes after the commencement of the 6-hour exposure 

(time-course data were not shown for the 30-minute exposure). The lower tetrachloroethylene blood level 

observed at the end of the longer exposure duration (6 hours) compared with the 30-minute exposure was 

attributed to local vasoconstriction of the exposed skin or rapid transport of the compound from the blood 

to adipose tissue.  

Tetrachloroethylene applied in a volume of 0.5 mL to a 2.92 cm2 patch of abdominal skin of ICR mice for 

15 minutes yielded an estimated absorption rate of 24.4 nmol/minute/cm2 (Tsuruta 1975).  An in vitro 

study in which 1 mL of tetrachloroethylene was applied to 3.7 cm2 of excised rat (SD-JCL) skin for 2– 

6 hours and penetration into a sodium chloride solution was measured resulted in an estimated penetration 

rate of 0.554 nmol/minute/cm2 for tetrachloroethylene.  The penetration rate estimated from the in vitro 

method was much slower than that observed in vivo.  The authors suggested that the difference may result 

from the lower solubility of tetrachloroethylene in 0.9% sodium chloride compared to its solubility in 

body fluids (Tsuruta 1977). 

Only one study examined uptake of tetrachloroethylene in an aqueous solution.  Bogen et al. (1992) 

immersed anesthetized female hairless guinea pigs in water containing 27–64 ppb tetrachloro[14C]ethylene 

for 70 minutes, and the disappearance of radioactivity from the water was determined as a means of 

estimating dermal uptake.  The guinea pigs were immersed up to their shoulders, and the top of the 

container was sealed around them to help prevent evaporation.  About 20% of the radioactivity was lost 

from the water in an hour.  When an animal was not present in the chamber, about 1.3% of the radioactivity 

was lost from the water. Therefore, it was assumed that most of the lost radioactivity was absorbed by the 

guinea pig.  Over the concentration range studied, no difference in the dermal absorption of 

tetrachloroethylene was noted. 
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3.4.2 Distribution 

Studies in animals, and autopsy findings in human cases of accidental death, demonstrate that absorbed 

tetrachloroethylene is distributed throughout the body regardless of the route of exposure, with highest 

concentrations measured in the adipose tissue, liver, and kidney (Dallas et al. 1994a, 1994b; Levine et 

al. 1981; Lukaszewski 1979; Pegg et al. 1979; Savolainen et al. 1977).  Tetrachloroethylene has been 

shown to cross the placenta and distribute to the fetus and amniotic fluid of mice (Ghantous et al. 1986).  

In addition, tetrachloroethylene has been detected in goat’s milk after oral exposure (Hamada and Tanaka 

1995) 

Organ:blood partition coefficients from in vitro and in vivo determinations can also inform the 

distribution of a chemical within the body.  Organ:blood partition coefficients that exceed 1 suggest 

organs that can accumulate the compound of interest.  Examples of organ:blood partition coefficients 

from experiments in four species are shown in Table 3-6. Regardless of the methods and in all species, 

partitioning from blood into fat was the greatest (partition coefficients ranged from 42.4 to 159), 

consistent with tetrachloroethylene’s high lipophilicity.  A marked species difference was observed in the 

milk:blood partition coefficients, which were reported to be 12 in Sprague-Dawley rats and 2.8 in humans 

(Byczkowski and Fisher 1994), possibly reflecting a greater fat content in the rat milk that was tested 

compared to the human milk.  

3.4.2.1  Inhalation Exposure 

Repeated inhalation exposure to tetrachloroethylene results in the accumulation of this compound in the 

body, as evidenced by increasing concentrations of tetrachloroethylene in expired air and blood.  When 

experimental subjects were exposed by inhalation to 100 ppm tetrachloroethylene 7 hours/day for 5 days, 

the concentration of tetrachloroethylene in exhaled breath increased as the 5-day week progressed 

(Stewart et al. 1977).  Following termination of exposure, additional accumulation of the compound was 

suggested by the prolonged decline (>14 days) in the concentration of tetrachloroethylene in exhaled air.  

The study authors suggested that tetrachloroethylene's affinity for fat tissue probably accounted for the 

protracted period of clearance from the lungs.  Altmann et al. (1990) measured blood concentrations of 

tetrachloroethylene in volunteers before and after each of four daily 4-hour exposures to 10 or 50 ppm, as 

well as 1 day after the end of exposure.  Even at these relatively air low concentrations and brief exposure 

durations, tetrachloroethylene levels in the blood increased from one exposure day to the next; blood 

levels increased from 36 to 56 μg/L after 1–4 days of exposure to 10 ppm, and from 59 to 153 μg/L after 

1–4 days of exposure to 50 ppm tetrachloroethylene.  
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Autopsy data after accidental human poisonings have demonstrated distribution of inhaled 

tetrachloroethylene to various organs, including liver, kidney, brain, lung, and heart.  The highest 

concentrations have generally been seen in the liver, kidney, and brain; however, the autopsy results did 

not include analysis of adipose tissue for tetrachloroethylene. In one human fatality due to 

tetrachloroethylene inhalation, the highest concentration of tetrachloroethylene was measured in the brain 

(36 mg/kg) and the lowest was in the lung (3 mg/kg) (Lukaszewski 1979).  Tetrachloroethylene was 

detected in the liver (240 mg/kg), kidney (71 mg/kg), brain (69 mg/kg), and lung (30 mg/kg) of a dry 

cleaner who died following exposure to high concentrations of the chemical (Levine et al. 1981).  

Tetrachloroethylene concentrations were 79, 31, and 46 mg/kg in the brain, heart, and lungs, respectively, 

in a 2-year-old boy found dead shortly after he was placed in his room with curtains that had been 

incorrectly dry cleaned (Garnier et al. 1996). Tetrachloroethylene was measured in the liver and lung of a 

26-year-old male found dead after intentional inhalation of a pressurized tire repair product containing 

tetrachloroethylene; concentrations were 341 mg/kg in the liver and 47 mg/kg in lung (Isenschmid et al. 

1998).  Tetrachloroethylene concentrations of 0.751 μg/g in muscle, 1.195 μg/g in kidney, 1.678 μg/g in 

myocardium, 1.855 μg/g in brain stem, and 1.95 μg/g in the liver were reported at autopsy of a 45-year-

old woman who was found unconscious in a laundry area and was transported to the hospital where she 

subsequently died (Dehon et al. 2000). 

Studies measuring radioactivity in animals after inhalation exposure to radiolabelled tetrachloroethylene 

confirm the distribution of tetrachloroethylene or its metabolites throughout the body, with the fat, liver, 

and kidney accumulating the highest concentrations.  In rats exposed to 600 ppm tetrachloro-

[1,2-14C]ethylene for 6 hours, the concentrations in kidney, liver, fat, lung, and heart were 0.167, 0.096, 

0.082, 0.066, and 0.045 μmol eq/g, respectively, 72 hours after exposure; radioactivity was not detected in 

the brain or adrenal glands (Pegg et al. 1979). The distribution of the compound in Sprague-Dawley rats 

following exposure to 200 ppm tetrachloroethylene vapor (four daily 6-hour periods followed by 1 day of 

exposure for 0, 2, 3, 4, or 6 hours) was characterized by Savolainen et al. (1977).  Tetrachloroethylene 

was found to have distributed primarily to perirenal fat.  In rats receiving five 6-hour exposures, 

concentrations of tetrachloroethylene in perirenal fat, liver, cerebrum, and lungs were 1,724.8, 160.7, 

142.5, and 74.0 nmol/g (Savolainen et al. 1977).  Dallas et al. (1994b) exposed Sprague-Dawley male rats 

to tetrachloroethylene at 500 ppm for up to 2 hours.  At specified times during and after exposure (up to 

72 hours after exposure), groups of five rats were sacrificed and tetrachloroethylene residues in the 

perirenal fat, brain, liver, kidneys, heart, lung, skeletal muscle and blood were measured. The maximum 

tetrachloroethylene concentration measured at any time point in these tissues were 1,536.3, 173.9, 152.4, 
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107.5, 106.6, 94.6, 87.3, and 44 μg/g (respectively). Half-lives for elimination from these tissues ranged 

from 322 minutes in the blood to 578 minutes in fat. High levels of radioactivity were also observed in 

maternal body fat, brain, nasal mucosa, blood, and in well-perfused organs such as the liver, kidneys, and 

lungs (concentrations were not reported) when pregnant 657BL/6N mice were exposed to radiolabelled 

(14C) tetrachloroethylene for 10 minutes or 1 hour (Ghantous et al. 1986).  The exposure concentration 

was not reported; 100 μCi of tetrachloroethylene was dissolved in oil and heated to generate the exposure. 

The Ghantous et al. (1986) study in pregnant mice also showed that tetrachloroethylene can cross the 

placenta and distribute to the fetus and amniotic fluid.  Unmetabolized tetrachloroethylene (measured as 

volatile radioactivity) was detected in the fetoplacental unit following inhalation exposure of pregnant 

657BL/6N mice to radiolabelled (14C) tetrachloroethylene for 10 minutes or 1 hour (Ghantous et al. 

1986). Nonvolatile radioactivity, measured to approximate the proportion of metabolized 

tetrachloroethylene, was higher in fetuses sacrificed later in gestation than those sacrificed early, 

consistent with increasing maternal metabolism of tetrachloroethylene over time. 

3.4.2.2  Oral Exposure 

Pertinent data regarding the distribution of tetrachloroethylene in humans following oral exposure were 

not found in the available literature. 

The distribution of tetrachloroethylene in animals exposed orally is similar to that seen after inhalation 

exposure, with highest levels seen in the fat, liver, and kidneys.  Distribution to the fat occurs over a long 

time period, while peak concentrations in liver and kidneys generally occur more rapidly. When male 

Sprague-Dawley rats were given single gavage doses of 1 or 500 mg/kg 14C-labelled tetrachloroethylene, 

radioactivity was found in the fat, kidney, liver, lung, and heart, but not the brain (Pegg et al. 1979).  At 

the higher dose of 500 mg/kg, the concentrations were 0.272, 0.137, 0.097, 0.092, and 0.051 μmol eq/g in 

kidney, liver, fat, lung, and heart, respectively, at sacrifice 72 hours after exposure (Pegg et al. 1979). 

Following oral exposure of Sprague-Dawley rats to a single dose of tetrachloroethylene (10 mg/kg), the 

highest concentrations were found in the fat, liver, kidney, and brain (peak concentrations were 36, 12.3, 

4.4, and 5.1 μg/g tetrachloroethylene, respectively; Dallas et al. 1994).  Peak concentrations in the liver, 

kidney, and brain were reached 10–15 minutes after dosing, while the peak concentration in fat occurred 

360 minutes after dosing (Dallas et al. 1994a).  In Beagle dogs given a single oral dose of tetrachloro-

ethylene, the highest concentrations were found in the fat, brain, liver, heart, and kidneys; peak 

concentrations were 42.8, 11.3, 6.3, and 4.9 μg/g, respectively (Dallas et al. 1994a).  Except for the fat, in 
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which the peak concentrations were noted at 720 minutes, peak concentrations in the other organs were 

observed at 60 minutes, the first measurement time; the study authors suggested that true maximum 

concentrations may have actually occurred earlier. 

3.4.2.3  Dermal Exposure 

Pertinent data regarding the distribution of tetrachloroethylene in humans and animals following dermal 

exposure to the compound were not found in the available literature. 

3.4.3 Metabolism 

The metabolism of tetrachloroethylene has been reviewed by Chiu and Ginsberg, (2011), Chiu et al. 

(2007), and Lash and Parker (2001); the proposed metabolic pathways for tetrachloroethylene is depicted 

in Figure 3-3. Tetrachloroethylene is metabolized through two irreversible pathways in humans, rats, and 

mice: oxidation by cytochrome P-450 isozymes and glutathione conjugation via glutathione-S-transferase.  

Qualitatively, the metabolism is similar in humans, rats, and mice; however, the extent of metabolism, as 

well as the predominant pathway, varies by species and exposure route, with evidence for dose-

dependency as well. 

Oxidative metabolism is postulated to occur in the liver, lung, and kidney (Chiu and Ginsberg 2011).  The 

primary isozyme believed to be responsible for oxidation of tetrachloroethylene is CYP2E1, based on 

data for similar compounds, but other isozymes may also be involved (Lash and Parker 2001).  Oxidation 

of tetrachloroethylene is believed to yield a Fe-O intermediate, which is converted to trichloroacetyl 

chloride and then hydrolyzed to trichloroacteic acid (Chiu and Ginsberg 2011). An epoxide intermediate, 

initially believed to be the progenitor to trichloroacetic acid, was shown to decompose to ethandioyl 

dichloride and then to CO and CO2 (Chiu and Ginsberg 2011); the epoxide pathway is believed to be 

minor.  Oxalic acid has been observed to be a metabolite of tetrachloroethylene oxidation and may occur 

via either the epoxide or Fe-O intermediates. The urinary metabolites of tetrachloroethylene are 

trichloroacetic acid and dichloroacetic acid.  These metabolites are considered to be the proximate 

toxicants responsible for the liver toxicity and carcinogenicity seen in tetrachloroethylene-exposed mice 

(Buben and O’Flaherty 1985; Chiu and Ginsberg 2011; Lash and Parker 2001). 

Glutathione conjugation is proposed to occur primarily in the liver and kidney (Chiu and Ginsberg 2011).  

Glutathione conjugation of tetrachloroethylene produces trichlorovinyl glutathione and subsequently, 

S-trichlorovinyl-L-cysteine (TCVC) (Chiu and Ginsberg 2011; Lash and Parker 2001).  TCVC may be 
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Figure 3-3.  Proposed Pathways for the Metabolism of Tetrachloroethylene 

d O OCl Cl

Urine 
aS-(1,2,2-trichlorovinyl)glutathione 
bS-(1,2,2-trichlorovinyl)cysteine 
cN-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine 
dtetrachloroethylene-Fe-O intermediate 

DP = dipeptidase; FM08 = flavin mono-oxygenase-3; GGT= gamma-glutamyl transpeptidase 
Dashed lines indicate hypothesized or quantitatively minor pathways. 

Source:  adapted from Chiu and Ginsberg 2011; Dekant et al. 1986; Green et al. 1990; Pegg et al. 1979 

 
 
 
 

  

153 TETRACHLOROETHYLENE 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

    

     

   

        

    

    

      

   

 

      

   

  

 

   

 

     

    

 

  

     

     

   

    

   

     

    

 

     

    

   

      

 

    

      

154 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

bioactivated to reactive species via beta-lyase or flavin-containing monooxygenases (Anders et al. 1988; 

Krause et al. 2003).  Dichloroacetic acid, which may also be formed via dechlorination of trichloroacetic 

acid, is postulated to occur primarily as an end product of beta-lyase activation after glutathione 

conjugation of tetrachloroethylene (Volkel et al. 1998).  TCVC may also be N-acetylated to N-acetyl 

trichlorovinyl cysteine (NAcTCVC).  NAcTCVC may be converted to reactive species via CYP3A 

sulfoxidation or excreted in the urine (Werner et al. 1996).  Reactive metabolites in the kidneys produced 

via the glutathione conjugation pathway may play a role in the renal toxicity and carcinogenicity in 

tetrachloroethylene-exposed rats (Chiu and Ginsberg 2011; Lash and Parker 2001). 

In humans, irrespective of the route of exposure, most (>80%) of the absorbed dose of tetrachloroethylene 

is exhaled unchanged (see Section 3.4.4).  The major urinary metabolite in exposed humans is 

trichloroacetic acid; in three male and three female volunteers exposed to 10, 20, or 40 ppm 

tetrachloroethylene for 6 hours, cumulative excretion of trichloroacetic acid was 100-fold higher than 

cumulative excretion of the second major urinary metabolite, NacTCVC (Volkel et al. 1998).  No 

dichloroacetic acid was detected in human urine.  In this study, the elimination half-life in humans was 

45.6 hours for trichloroacetic acid and 14.1 hours for NAcTCVC; the authors noted that the NAcTCVC 

was eliminated within 24 hours after exposure in all subjects. 

Small amounts of N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine were detected in the urine of four workers 

occupationally exposed to tetrachloroethylene at 50 ppm for 4 or 8 hours/day, 5 days/week (Birner et al. 

1996).  The concentrations of N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine were 2.2–14.6 pmol/mg 

creatinine compared to concentrations of 13–65 nmol/mg creatinine for trichloroacetic acid and 

trichloroethanol combined.  The amount of tetrachloroethylene exhaled was not determined, so it is not 

possible to estimate what percentage of the total dose of tetrachloroethylene was metabolized to N-acetyl-

S-(1,2,2-trichlorovinyl)-L-cysteine. Voelkel et al. (1999) also detected N-acetyl-S-(1,2,2-trichlorovinyl)-

L-cysteine in the urine of exposed humans. 

Trichloroethanol has been reported to occur in the urine of workers exposed to tetrachloroethylene (Birner 

et al. 1996; Monster 1986); however, in studies of controlled exposure to pure tetrachloroethylene in 

humans or animals, trichloroethanol has not been detected in the urine (Buben and O’Flaherty 1985; Hake 

and Stewart 1977; Monster et al. 1979; Volkel et al. 1998). 

The metabolism of tetrachloroethylene appears to be saturable in humans at high concentrations 

(>100 ppm), although the data are limited.  Total measured trichloro-compounds in the urine of 
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tetrachloroethylene-exposed workers in dry cleaning and textile-processing plants reached a plateau in the 

urine at tetrachloroethylene exposure concentrations >100 ppm in workroom air (Ohtsuki et al. 1983).  

Another study of dry cleaning workers showed that the urinary level of trichloro-compounds was linearly 

related to exposure at concentrations <112 ppm (Seiji et al. 1989).  Volkel et al. (1998) also observed a 

linear relationship between urinary excretion of trichloroacetic acid and NAcTCVC in humans exposed to 

10, 20, or 40 ppm tetrachloroethylene for 6 hours, indicating that metabolic saturation did not occur at 

these low concentrations. 

Biological monitoring data in occupationally exposed groups have indicated that the amount of 

tetrachloroethylene metabolized varies among different ethnic human populations; this finding is 

supported by a limited volunteer study. Seiji et al. (1989) reported that the relationship between total 

urinary trichloro-compounds and the concentration of tetrachloroethylene in breath air was 0.063 mg 

trichloroacetic acid/L per ppm tetrachloroethylene in Chinese workers, while the value was 0.7 mg 

trichloroacetic acid/L per ppm tetrachloroethylene in Japanese workers.  Jang et al. (1993) determined 

that the biological exposure index in Korean workers exposed to 50 ppm tetrachloroethylene was 1.6 mg 

tetrachloroethylene/L in blood and 2.9 mg trichloroacetic acid/L in urine compared to the American 

Conference of Governmental Industrial Hygienists (ACGIH) values of 1 mg tetrachloroethylene/L in 

blood and 7 mg trichloroacetic acid/L in urine for exposure to 50 ppm (ACGIH 1991). In a controlled 

exposure experiment evaluating ethnic differences, a 35% higher peak urinary trichloroacetic acid 

concentration and significantly (p<0.05) higher area under the urinary trichloroacetic acid concentration-

time curve were observed in three Caucasian volunteers compared with three Asian volunteers exposed to 

50 ppm tetrachloroethylene for 6 hours (Jang et al. 1997). Blood concentrations of parent compound 

measured at the end of exposure did not differ between the two groups. 

The variability of tetrachloroethylene metabolism among humans is reflected by a wide range of Vmax and 

Km values that have been reported in the literature, as shown in Table 3-7.  

Species variability in metabolic rates is evident from the Vmax values for humans, rats, and mice 

(Table 3-7), which show that rats metabolize tetrachloroethylene at a greater rate than humans, and mice 

metabolize tetrachloroethylene at a much greater rate than rats. In a study comparing metabolism of 

tetrachloroethylene in humans and rats exposed to the same concentrations (10, 20, and 40 ppm) for 

6 hours, the blood levels of trichloroacetic acid were much higher (20- and 10-fold higher immediately 

after exposure to 10 and 40 ppm, respectively) in rats than in humans.  In addition, elimination half-lives 

of trichloroacetic acid and NAcTCVC in urine were much lower (11 and 7.5 hours, respectively) in rats 
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Table 3-7.  Metabolism of Tetrachloroethylene in Mice, Rats, and Humans 

Parameters Human Mouse Rat 
Total tetrachloroethylene metabolisma 

Vmax/body weight (nmol/(minute/kg)) 5.0–61 210–1860 27.2–400 
[13 (2.0)] [710 (2.04)] [144 (2.97)] 

Km (nmol/mL blood) 1.2–193 1.6–32 1.8–108 
[13 (5.1)] [9.4 (2.95)] [21 (4.57)] 

Vmax/(Km body weight)b (mL blood/(minute/kg)) 0.05–9.3 12–248 3.7–15 
[0.74 (4.3)] [75 (2.57)] [6.9 (1.69)] 

In vitro liver cytosolic metabolism of tetrachloroethylenec 

Rate (pmol/minute/mg protein) 2.08±2.57 19.26±1.33 3.87±2.12 
In vitro liver cytosolic GSH conjugation of tetrachloroethylene 

Rate (pmol/minute/mg protein)d Not detected 3.4 18.2 
In vitro liver cytosolic GSH conjugation of tetrachloroethylene to S-(1,2,2-trichlorovinyl)glutathione 

Vmax (pmol/minute/mg protein)e, male Not detected 27.9±6 84.5±12 
Vmax (pmol/minute/mg protein)e, female Not detected 26.0±4 19.5±8 

In vitro kidney cytosolic GSH conjugation of tetrachloroethylene to S-(1,2,2-trichlorovinyl)glutathione 
Vmax (pmol/minute/mg protein)e, male Not detected 11.6±6 Not detected 
Vmax (pmol/minute/mg protein) e, female Not detected 12.2±4 Not detected 

In vitro kidney cytosolic metabolism of S-(1,2,2-trichlorovinyl)-L-cysteine (β-lyase activity)d 

Km (mM), male 2.53±0.09 5.69±2.22 0.68±0.06 
Km (mM), female 2.67±2.11 4.43±1.42 1.26±0.21 
Vmax (nmol/minute/mg protein), male 0.49±0.07 1.15±0.31 4.00±0.11 
Vmax (nmol/minute/mg protein), female 0.64±0.54 1.66±0.27 3.64±0.41 
Vmax/Km, male 0.21 0.20 5.88 
Vmax/Km, female 0.24 0.37 2.88 

aSummarized by Hattis et al. (1990); values are range [geometric mean (geometric standard deviation)] 
bIndicator of intrinsic low-dose metabolic clearance rate.  
cFrom Reitz et al. 1996; values are means±standard deviations. 
dFrom Green et al. 1990; values are means or means±standard deviations.  
eFrom Dekant et al. 1998; values are means or means±standard error of the mean.  

GSH = glutathione 
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than in humans (45.6 and 14.1 hours, respectively) (Volkel et al. 1998).  Unlike humans, rats also 

excreted detectable levels of dichloroacetic aid in the urine, with an elimination half-life similar to that for 

trichloroacetic acid (11 hours). 

Levels of an N-acetylcysteine glutathione conjugate detected in the urine of Wistar rats and NMRI and 

B6C3F1 mice and in the bile of F344 rats exposed to tetrachloroethylene were higher in rat urine than in 

mouse urine, and higher after gavage dosing than after inhalation exposure (Dekant et al. 1986; Green et 

al. 1990).  The glutathione pathway was found to be minor at low doses, but began to increase following 

saturation of the cytochrome P-450 pathway (Green et al. 1990).  Green et al. (1990) compared the 

activities of the glutathione S-transferase and β-lyase enzymes in humans, B6C3F1 mice, and F344 rats 

(Table 3-7).  Glutathione conjugation to tetrachloroethylene could not be detected using liver cytosol 

from humans, while the rate of glutathione conjugation was higher in rat relative to mouse liver cytosol. 

β-Lyase activity in kidney cytosol was also higher in rats relative to mice and humans. 

Urinary oxalic acid accounted for 18.7 and 6% of the dose following inhalation exposure of Sprague-

Dawley rats to tetrachloroethylene at 10 and 600 ppm, respectively (Pegg et al. 1979).  

Studies quantifying metabolites in urine after inhalation exposure of laboratory rodents also show dose-

dependency.  Following a 6-hour inhalation exposure, the amount of tetrachloroethylene excreted as 

metabolites decreased with increasing exposure concentration in both F344 rats and B6C3F1 mice (Reitz 

et al. 1996).  In rats exposed to 11.9, 318, or 1,146 ppm tetrachloroethylene, 33, 14.6, and 11.3% was 

excreted as metabolites, respectively.  In mice exposed to 11, 365, or 1,201 ppm tetrachloroethylene, 85, 

44, and 26% of the dose was excreted as metabolites. 

3.4.3.2  Oral Exposure 

Limited data on metabolism after oral exposure are available. Swiss-Cox mice were administered 

tetrachloroethylene in doses of 0, 20, 100, 200, 500, 1,000, 1,500, and 2,000 mg/kg/day in corn oil by 

gavage for 6 weeks (Buben and O'Flaherty 1985).  The amount of total metabolites found in the urine 

increased logarithmically with dose and approached a plateau with doses of tetrachloroethylene higher 

than 1,000 mg/kg/day (Buben and O'Flaherty 1985).  
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3.4.3.3  Dermal Exposure 

3.4.4 Elimination and Excretion 

Exhalation of unmetabolized parent compound is the primary route of excretion of an absorbed dose of 

tetrachloroethylene in humans, regardless of the route of exposure. The relative importance of excretory 

routes in animals depends on the concentration in air, the species, and the sex of animal.  Mice excrete 

more tetrachloroethylene as urinary metabolites, and much less as unmetabolized parent compound in 

exhaled breath, than either rats or humans do. Tetrachloroethylene has a long half-life in adipose tissue 

because of its high adipose:blood partition coefficient and because of the relatively low rate of blood 

perfusion to this tissue. 

3.4.4.1  Inhalation Exposure 

In six male volunteers exposed by inhalation for 4 hours to either 72 or 144 ppm tetrachloroethylene, 

most (80–100%) of the total compound absorbed was exhaled unchanged after 162 hours (Monster et al. 

1979). From concentration-time course curves of tetrachloroethylene in the exhaled air and blood of male 

volunteers, the half-lives of tetrachloroethylene in three major body compartments were calculated to be 

12–16 hours for the vessel-rich group, 30–40 hours for the muscle group, and 55 hours for the adipose 

group (Monster et al. 1979).  Chiu et al. (2007) exposed six male volunteers to 1 ppm tetrachloroethylene 

for 6 hours, and reported average recovery of tetrachloroethylene in exhaled air to be 82%.  The 

concentration of tetrachloroethylene in alveolar air was determined for volunteers (three males, 

three females) exposed to 0.02–0.40 mmol/m3 (0.5–9.8 ppm) of the chemical for durations of 1– 

60 seconds (Opdam and Smolders 1986).  Measurements made in the postexposure period showed that 

tetrachloroethylene concentrations increased with residence time of the chemical in the lung for residence 

times ranging from 5 to 10 seconds.  This could be explained by excretion of tetrachloroethylene by 

mixed venous blood.  The study authors stated that the concentration of tetrachloroethylene in arterial 

blood could be reasonably estimated by the concentration of the chemical in alveolar air during normal 

breathing (residence time of about 5 seconds). 

In humans, the urinary excretion of metabolites of tetrachloroethylene represents a small percentage of 

the absorbed dose of tetrachloroethylene following inhalation exposure.  Urinary excretion of 

trichloroacetic acid represented <1% of the total estimated absorbed dose of tetrachloroethylene in 

volunteers exposed by inhalation to 72 or 144 ppm for 4 hours (Monster et al. 1979) or to 1 ppm for 

6 hours (Chiu et al. 2007). 
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Volkel et al. (1998) observed dose-dependent increases in the excretion of trichloroacetic acid and 

N-acetyl-S(trichlorovinyl)-L-cysteine in volunteers (three males and three females) exposed for 6 hours to 

concentrations of 10, 20, and 40 ppm.  Mean estimates of the cumulative urinary excretion of 

trichloroacetic acid (adjusted for body weight) were 0.07, 0.18, and 0.29 μmol/kg body weight up to 

78 hours after exposure to 10, 20, and 40 ppm, respectively; estimates of cumulative excretion of 

N-acetyl-S(trichlorovinyl)-L-cysteine were 0.65, 2.02, and 3.01 nmol/kg body weight, respectively, up to 

35 hours after exposure (Volkel et al. 1998).  It has been reported that the urinary excretion of 

trichloroacetic acid in volunteers increased linearly with tetrachloroethylene concentrations in the air and 

plateaued at 50 ppm (Ikeda et al. 1972).  This finding indicates that the metabolism of tetrachloroethylene 

is saturable and that the concentration of urinary metabolites would not reflect the amount of exposure at 

a concentration above the saturation of metabolism.  Another study showed that 67 hours after a 3-hour 

exposure to tetrachloroethylene vapors, the excretion of trichloroacetic acid in the urine of four male 

volunteers was 1.8% of the estimated tetrachloroethylene retained (Ogata et al. 1971).  Dry cleaning 

employees showed an increased trend of excretion of thioethers throughout the week, but the significance 

of this finding is unclear since the levels of thioethers were well within the range found in unexposed 

individuals (Lafuente and Mallol 1986).  A linear relationship was found for the urinary concentration and 

the exposure concentration for workers exposed to tetrachloroethylene in various industries (Ghittori et al. 

1987; Imbriani et al. 1988).  The biological half-life of urinary metabolites of tetrachloroethylene was 

found to be about 6 days in occupationally exposed individuals (Ikeda and Imamura 1973). 

At the same tetrachloroethylene exposure concentrations, rats excrete greater quantities of the metabolites 

trichloroacetic acid and NAcTCVC than humans.  Volkel et al. (1998) compared the excretion of 

trichloroacetic acid and NAcTCVC in rats exposed to 10, 20, or 40 ppm tetrachloroethylene for 6 hours 

with results observed in humans (see above). Greater cumulative excretion of both metabolites was seen 

in rats compared with humans; cumulative 72-hour excretion of trichloroacetic acid in exposed male and 

female rats was 1.92, 3.44, and 6.55 μmol/kg body weight at 10, 20, and 40 ppm, respectively, while 

corresponding cumulative 60-hour excretion of NAcTCVC was 3.48, 7.14, and 22.98 nmol/kg body 

weight (Volkel et al. 1998). 

Mice excrete much higher quantities of urinary tetrachloroethylene metabolites when compared with rats 

exposed to the same concentration and duration.  In two studies, both using a 6-hour inhalation exposure 

to 10 ppm radiolabelled tetrachloro[1,2-14C]ethylene, male Sprague-Dawley rats exhaled 68% of the 

absorbed radioactivity as unmetabolized parent compound (Pegg et al. 1979), while male B6C3F1 mice 
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excreted only 12% through this route (Schumann et al. 1980).  Exhalation of radiolabelled carbon dioxide 

represented 3.6% of the dose in rats, (Pegg et al. 1979) and 7.9% in mice (Schumann et al. 1980).  

Finally, urinary excretion of nonvolatile metabolites represented 18.7% of the absorbed radioactivity in 

rats and 62.5% in mice (Pegg et al. 1979; Schumann et al. 1980).  In a study by Yllner (1961), female 

mice (unspecified strain) exposed for 2 hours to 14C-tetrachloroethylene vapors at a concentration 

reported to yield a dose of 1,300 mg/kg absorbed 70% of the dose.  In 4 days, 90% of the absorbed 

radioactivity was excreted:  70% in expired air, 20% in the urine, and <0.5% in the feces.  Trichloroacetic 

acid and oxalic acid comprised 52 and 11% of the label in the urine, respectively.  Traces of 

dichloroacetic acid were also present in the urine. The apparent disagreement between the results of 

Yllner (1961) and those of Schumann et al. (1980) regarding the percentage of unchanged tetrachloro-

ethylene in the expired air suggests that as the body burden of tetrachloroethylene increases, the 

percentage of unchanged parent compound excreted increases (Green 1990). 

The study in rats by Pegg et al. (1979) showed dose-dependent changes in excretion pathways; at a higher 

exposure concentration, a larger fraction of the absorbed dose was exhaled as unmetabolized parent 

compound.  In rats exposed to 10 ppm tetrachloroethylene, 68% of the absorbed radioactivity was exhaled 

as unmetabolized parent compound and 3.6% was exhaled as CO2, while in rats exposed to 600 ppm, the 

proportions exhaled as unmetabolized tetrachloroethylene and CO2 were 88 and 0.7%, respectively.  The 

rats’ 72- hour urinary excretion of nonvolatile metabolites represented 18.7% of the absorbed dose at 

10 ppm and 6.0% at 600 ppm (Pegg et al. 1979). 

Volkel et al. (1998) showed markedly (>3-fold) higher excretion of glutathione-dependent metabolites in 

male Wistar rats compared with females when both were exposed for 6 hours to a high concentration 

(400 ppm) of tetrachloroethylene.  Cumulative excretion of NAcTCVC was 414.8 nmol/kg body weight 

in males, compared with 125.8 nmol/kg body weight in females.  Higher levels (1.6–2-fold) of the 

oxidative metabolites, trichloroacetic acid and dichloroacetic acid, were also excreted by males than by 

females (Volkel et al. 1998). 

The half-lives for elimination of trichloroacetic acid and NAcTCVC in urine have been estimated to be 

45.6 and 14.1 hours, respectively, in humans and 11.0 and 7.5 hours, respectively, in rats after inhalation 

exposure for 6 hours to 10, 20, or 40 ppm tetrachloroethylene (Volkel et al. 1998). 
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3.4.4.2  Oral Exposure 

The only study of the excretion of tetrachloroethylene and metabolites following oral exposure in humans 

is a case report of a 6-year-old boy who accidentally ingested 8–10 mL of pure tetrachloroethylene 

(Koppel et al. 1985).  The bulk of the ingested tetrachloroethylene was exhaled unchanged; however, this 

was not under normal conditions since the patient was hyperventilated to facilitate pulmonary elimination 

of the compound.  Tetrachloroethylene, trichloroacetic acid, and trichloroethanol were detected and 

quantified in the urine.  Total urinary tetrachloroethylene decreased from 30 μg on day 1 of treatment to 

3 μg on day 3.  Total urinary trichloro-compounds increased from 8 mg on day 1 to 68 mg on day 3. 

Male F344 rats given a daily oral dose of 1,500 mg/kg tetrachloroethylene for 42 days had evidence of 

kidney damage.  In addition, radiolabelled material included with the doses given on days 1, 17, and 42 

was detected in bile and urine (Green et al. 1990).  

In animals, exhalation of unchanged tetrachloroethylene was the main route of excretion of the orally 

administered chemical.  Sprague-Dawley rats given a single oral dose of tetrachloroethylene (1 mg/kg) 

excreted 72% of the absorbed dose in the breath as the unmetabolized component and 16% as metabolites 

in the urine over a 72-hour period (Pegg et al. 1979).  When the administered dose was increased to 

500 mg/kg, the percentage of the dose exhaled as unmetabolized parent compound over a 72-hour period 

increased to 90%, whereas the percentage of the dose excreted as metabolites in the urine dropped to 5%. 

Similar results were reported in Sprague-Dawley rats following ingestion of tetrachloroethylene-saturated 

drinking water solutions ad libitum for 12 hours (Frantz and Watanabe 1983).  Administration of 

tetrachloroethylene in the drinking water provided a dose (about 8 mg/kg) that was somewhat lower than 

the doses of tetrachloroethylene given in gavage studies.  Excretion of the absorbed dose was similar, 

however, for both methods of oral administration.  Of the absorbed dose, 88% was exhaled as 

unmetabolized parent compound and 7.2% of the absorbed radioactivity was excreted in the urine over a 

72-hour period.  Exhalation of unmetabolized tetrachloroethylene was also the predominant mode of 

excretion of an orally administered tetrachloroethylene dose in B6C3F1 mice (Schumann et al. 1980).  

Mice given a single oral dose of tetrachloroethylene (500 mg/kg) exhaled 83% of the absorbed dose as the 

unmetabolized compound and 10% as metabolites in the urine over 72 hours.  Exposure at 500 mg/kg 

resulted in saturation of oxidative metabolism in the mouse.  There was a shift in the route of elimination 

from metabolism and urinary excretion to excretion in expired air. 
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A comparison of the disposition of tetrachloroethylene in Sprague-Dawley rats and Beagle dogs 

following oral exposure indicates that the rate and magnitude of exhalation and metabolism are markedly 

higher in the rat than the dog (Dallas et al. 1994a).  Although exhalation of tetrachloroethylene was not 

measured directly, the smaller blood:air partition coefficient in rats (19.6) compared to dogs (40.5) 

indicates that tetrachloroethylene more readily diffuses from the pulmonary blood into the alveolar air of 

the rat.  Whole-body clearance of tetrachloroethylene in rats and dogs treated with a single oral dose was 

30.1 mL/minute/kg at 3 mg/kg and 32.5 mL/minute/kg at 10 mg/kg for rats, and 14.6 mL/minute/kg at 

3 mg/kg and 25 mL/minute/kg at 10 mg/kg for dogs (Dallas et al. 1995). 

Tetrachloroethylene may also be eliminated via secretion into breast milk.  Tetrachloroethylene was 

detected in goat’s milk as early as 30 minutes after intraruminal administration of a mixture containing 

tetrachloroethylene and two other solvents (Hamada and Tanaka 1995).  Increasing concentrations were 

seen up to 6.5 hours after dosing, and tetrachloroethylene remained at a detectable concentration in milk 

24 hours after exposure (Hamada and Tanaka 1995) 

3.4.4.3  Dermal Exposure 

Volunteers who immersed their thumbs for 30 minutes in liquid tetrachloroethylene exhaled the 

compound unchanged for time periods exceeding 5 hours (Stewart and Dodd 1964).  The maximum mean 

alveolar air concentration of tetrachloroethylene in these subjects was 0.3 ppm, and the study authors 

were able to construct concentration-time curves for the mean alveolar tetrachloroethylene concentrations. 

Following immersion (up to their shoulders) of anesthetized hairless guinea pigs in water containing 10– 

64 ppb tetrachloroethylene, about 14% of the estimated dose was excreted in the urine during the 4 weeks 

after exposure (Bogen et al. 1992).  During the 6 days after exposure, 95% of the metabolized dose was 

excreted in the urine, relative to 95% of the metabolized dose excreted in the urine in 1 day following a 

subcutaneous injection. 

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models 

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 
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combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points. 

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and 

Krishnan 1994; Andersen et al. 1987).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model 

representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters. The 

numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions.  

The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems. If the uptake and disposition of the chemical substance(s) are 

adequately described, however, this simplification is desirable because data are often unavailable for 

many biological processes.  A simplified scheme reduces the magnitude of cumulative uncertainty. The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). 

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 
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humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species.  

Figure 3-4 shows a conceptualized representation of a PBPK model. 

If PBPK models for tetrachloroethylene exist, the overall results and individual models are discussed in 

this section in terms of their use in risk assessment, tissue dosimetry, and dose, route, and species 

extrapolations. 

A number of PBPK models have been developed over the past 25 years to predict blood or target tissue 

doses of tetrachloroethylene or its metabolites after inhalation, oral, or dermal exposure in animals (Bois 

et al. 1990; Dallas et al. 1994, 1995; Fisher et al. 1997; Hattis et al. 1990, 1993; Loizou 2001; Poet et al. 

2002; Rao and Brown 1993; Reitz et al. 1996). In addition, several PBPK models have been developed 

and/or applied for the purpose of evaluating ethnic differences in toxicokinetics (Jang and Droz 1997), 

age-related differences (Clewell et al. 2004; Rodriguez et al. 2007; Sarangapani et al. 2003; Yokley and 

Evans 2008), or gender-related differences (Clewell et al. 2004; Sarangapani et al. 2003) in 

tetrachloroethylene toxicokinetics. NRC (2010), in its review of an earlier draft EPA Toxicological 

Review of Tetrachloroethylene, expressed concerns regarding the inadequate validation of model 

predictions after oral dosing and recommended that a harmonized PBPK modeling approach be used to 

synthesize the various models into a single structure, particularly for the purpose of route-to-route 

extrapolation.  In response to these concerns and recommendations, Chiu and Ginsberg (2011) developed 

a harmonized PBPK model for oral and inhalation exposure to tetrachloroethylene in mice, rats, and 

humans. The model was based on the authors’ previously developed model for trichloroethylene (Chiu et 

al. 2009).  This model is discussed in further detail below. Other PBPK models are not described in detail 

because the Chiu and Ginsberg (2011) model was developed most recently and has the advantage of 

integrating the three species and two primary exposure routes of interest for risk assessment. 

Chiu and Ginsberg (2011) Model 

Description of the Model. The structure of the Chiu and Ginsberg (2011) model is shown in 

Figure 3-5 and parameters and values for rats, mice, and humans are listed in Table 3-8. This model 

includes eight tissue compartments: respiratory tract, gastrointestinal tract, kidney, liver, fat, rapidly 

perfused and slowly perfused tissues, and venous blood.  Metabolism is assumed to occur in the 

respiratory tract, kidney, and liver. Metabolism occurring in the respiratory tract consists of 

tetrachloroethylene oxidation, with a fraction of oxidative flux undergoing instantaneous elimination 
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Figure 3-4.  Conceptual Representation of a Physiologically Based  
Pharmacokinetic (PBPK) Model for a  

Hypothetical Chemical Substance  
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165 TETRACHLOROETHYLENE 

Note:  This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by 
ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 

Source:  adapted from Krishnan and Andersen 1994 
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Figure 3-5.  Overall Structure of PBPK Model for Tetrachloroethylene and  
Metabolites  

Boxes with underlined labels are additions or modifications of the Chiu et al. (2009) model. 

DCA = dichloroacetic acid; NAcTCVC = N-acetyl trichlorovinyl cysteine; ODE = ordinary differential equation; 
TCA = trichloroacetic acid 

Source: Chiu and Ginsberg 2011 
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Table 3-8.  Baseline and Posterior Values of PBPK Model Parameters Selected for  
Optimization using MCMC  

GSD of 

Parameter description 
PBPK 
parameter Baseline 

Posterior 
mode 

posterior 
mode 
across 
chains 

Range of 
posterior modes 
across chains 

Human 
Alveolar ventilation (L/hour) QP 372 476 1.1 450–640 
Hepatic oxidation (linear) (L/hour) VMax/KM 0.353 0.454 1.08 0.346–0.468 
Renal oxidation (linear) (L/hour) VMaxKid/KM 

Kid 
0.00076 0.0947 1.09 0.0702–0.105 

Hepatic GSH conjugation (linear) VmaxTCVG/ 
KMTCVG 

0.0196 5.26 17.1 0.00194–5.48 

Rate constant for urinary excretion 
of NAcTCVC (/hour) 

kNAT – 0.28 1.07 0.228–0.293 

Fraction of GSH conjugation to 
urinary NAcTCVC 

FracNATUrn – 0.000482 15.8 0.000472–1 

Fraction of GSH conjugation to 
urinary DCA 

FracDCAUrn – 0.00022 18.5 0.0000112–0.442 

Rat 
Alveolar ventilation (L/hour) QP 10.2 6.31 1.02 6.28–6.68 
VMAX for saturable hepatic oxidation 
(mg/hour) 

VMAX 0.256 0.87 1.37 0.415–1.93 

KM for saturable hepatic oxidation 
(mg/L) 

KM 69.7 31.1 1.39 14.8–71.9 

Hepatic GSH conjugation (linear) VmaxTCVG/ 
KMTCVG 

2.22 0.00204 1.27 0.00131–0.00355 

Rate constant for urinary excretion 
DCA (/hour) 

kDCA – 0.129 1.65 0.0758–0.451 

Fraction of GSH conjugation to 
urinary NAcTCVC 

FracNATUrn – 0.0143 1.29 0.00919–0.0253 

Fraction of GSH conjugation to 
urinary DCA 

FracDCAUrn – 0.702 1.26 0.43–0.98 

Mouse 
Alveolar ventilation (L/hour) QP 2.09 2.89 1.03 2.86–3.22 
VMAX for saturable oxidation 
(mg/hour) 

VMAX 0.23 0.026 1.16 0.022–0.0369 

KM for saturable oxidation (mg/L) KM 88.6 0.417 1.28 0.338–0.892 
Linear oxidation pathway Vmax2/KM2 – 0.0188 1.05 0.0165–0.0207 
Linear conjugation pathway VmaxTCVG/ 

KMTCVG 
0.656 0.0000683 3.83 0.0000305– 

0.00179 
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Table 3-8.  Baseline and Posterior Values of PBPK Model Parameters Selected for  
Optimization using MCMC  

GSD of 
posterior 
mode Range of 

PBPK Posterior across posterior modes 
Parameter description parameter Baseline mode chains across chains 

Rate constant for TCA kUrnTCA 1.48 0.638 1.05 0.56–0.695 
plasma→urine (/hour) 
Rate constant for hepatic kMetTCA 2.93 1.26 1.05 1.11–1.38 
TCA→other (/hour) 

DCA = dichloroacetic acid; GSD = geometric standard deviation; GSH = glutathione; MCMC = Markov Chain Monte 
Carlo; NAcTCVC = N-acetyl trichlorovinyl cysteine; PBPK = physiologically based pharmacokinetic; 
TCA = trichloroacetic acid; TCVG = S-(1,2,2-trichlorovinyl)glutathione 

Source:  Chiu and Ginsberg 2011 
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within the respiratory tract or translocation to the body. In both liver and kidney, a fraction of the 

tetrachloroethylene is converted to the GSH conjugate, S-(1,2,2-trichlorovinyl)glutathione; disposition of 

this metabolite is simulated with a simplified structure allowing for urinary excretion of the downstream 

metabolites NAcTCVC or dichloroacetic acid or an alternative fate that encompasses all other possible 

fates, such as activation by beta-lyase to products other than dichloroacetic acid or activation to reactive 

products by flavin-containing monooxygenases or sulfoxidation.  Urinary excretion of NAcTCVC and 

dichloroacetic acid is modeled using a fitted delay parameter to better simulate available time-course data.  

The total rate of oxidation of tetrachloroethylene in liver, kidney, and lung is split into fractions leading to 

trichloroacetic acid and to other oxidative pathways.  A second, saturable oxidative pathway was added to 

the liver to account for evidence of tetrachloroethylene metabolism by CYPs other than CYP2E1.  A 

fraction of the trichloroacetic acid formed in the kidney is assumed to be excreted in the urine, with the 

remainder translocated to the body compartment. 

Oxidative metabolism in the liver and kidney of humans is modeled as a linear process due to a lack of 

data on the degree of saturation.  Oxidative metabolism in the rat and mouse is modeled as a saturable 

process, with an additional linear process in the mouse to provide better fit than seen with a single 

saturable process.  Glutathione conjugation is modeled as a linear process in all three species. 

Baseline Parameter Values. The Chiu and Ginsberg (2011) model used baseline physiological 

values primarily obtained from standard references including the International Commission on 

Radiological Protection (ICRP 2002) and Brown et al. (1997).  Partition coefficients were obtained by 

pooling available in vitro data from six studies (Gargas et al. 1989; Gearhart et al. 1993; Koizumi 1989; 

Mahle et al. 2007; Mattie et al. 1994; Reitz et al. 1996). In addition, in vitro metabolic parameters from 

the published literature were selected and converted to Vmax, Km, and/or Vmax/Km values using the 

microsomal and cytosolic protein content and tissue-specific cellularity for liver and kidney in mice, rats, 

and humans. 

Parameter Optimization. Model predictions obtained with the selected baseline values were 

compared with in vivo inhalation data, and the results were used to select parameters for optimization. 

All of the tetrachloroethylene metabolism parameters were selected for optimization, while most 

physiological parameters (with the exception of alveolar ventilation rate) and partition coefficients were 

held at their baseline values.  The selected parameters were optimized using a limited Bayesian approach 

with flat priors and inferences obtained by Markov Chain Monte Carlo (MCMC). Table 3-8 shows the 

baseline parameter values and posterior mode values obtained using MCMC. 
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Model Evaluation. Model predictions were compared with tissue, blood, and urinary levels of 

tetrachloroethylene and its metabolites from in vivo studies of mice, rats, and humans.  Residual errors 

within a factor of 2–3 were observed for most of the data. The poorest predictions in mice were the 

fraction of tetrachloroethylene exhaled and the liver concentration of trichloroacetic acid; in rats, the 

concentration of tetrachloroethylene in fat had the highest residual error. The evaluation dataset for 

humans did not contain enough data to evaluate the uncertainty in the internal dose metrics. 

Target Tissues. The model was used to predict a variety of dose metrics including: area under the 

tetrachloroethylene blood concentration-time curve (mg h/L/day), fraction of dose oxidized, fraction of 

dose conjugated, and systemic trichloroacetic acid dose (mg/kg/day). The metric with the lowest 

uncertainty across all three species was the blood concentration metric.  The fraction conjugated was most 

uncertain, especially in humans, with a 3,000-fold range across chains in the human model. 

Species Extrapolation. The model simulates toxicokinetics in mice, rats, and humans.  Models for 

these species were developed by optimization of metabolic parameters using a limited Bayesian analysis. 

The scaled rat and human models have been evaluated against independent observations not used to 

estimate model parameter values (Chiu and Ginsberg 2011). 

Mass balance inferences based on the estimates of various dose metrics in the Chiu and Ginsberg (2011) 

model confirm the species differences in metabolism.  In mice exposed by inhalation, the model predicts 

that ~20% of the intake is metabolized, of which only ~1% is conjugated via GSH and the balance 

oxidized.  In mice exposed orally, ~60% of the intake is metabolized, of which only ~2% is conjugated 

and the balance oxidized.  In rats exposed by inhalation, ~4% of the intake is metabolized, of which 

≤0.3% is conjugated and the balance oxidized.  In rats exposed orally, ~10% of the intake is metabolized, 

of which ≤0.6% is conjugated and the balance oxidized.  In humans exposed by inhalation, ~10% of the 

intake is metabolized; after oral exposure, ~20% of the intake is metabolized. The fractions of 

metabolism attributable to the oxidative and conjugative pathways in humans were very uncertain, with 

GSH conjugation estimates ranging from <0.003 to 10% after inhalation and from 0.006 to 19% after oral 

exposure (the high values assume that all metabolism occurred via this pathway). 

Interroute Extrapolation. The tetrachloroethylene model (Chiu and Ginsberg 2011) simulates 

tetrachloroethylene kinetics associated with inhalation, oral, and intravenous dosing.  The model 

predicted very similar blood concentration-time AUC estimates for oral and inhalation exposures in 
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humans (~2 mg hour/L/day per mg/kg/day oral dose or ppm air across a wide range of doses and exposure 

concentrations).  Model predictions of AUC in rats were about 2-fold higher after inhalation exposure 

than after oral exposure, presumably due to higher hepatic metabolism after oral exposure.  In mice, the 

route differences were marked; oral exposure resulted in AUC estimates about 5% of the AUC estimates 

after inhalation exposures, again due to the higher hepatic metabolism. 

Risk Assessment. EPA (2012a) used the human model to extrapolate from an inhalation reference 

concentration to an oral reference dose.  The basis of the inhalation reference concentration was 

epidemiological evidence of neurotoxicity (neurobehavioral impairments and decrements in color vision) 

in humans exposed to tetrachloroethylene.  The interroute extrapolation was based on the AUC of blood 

tetrachloroethylene as the internal dose metric; this metric was presumed to be a step in the neurotoxicity 

pathway.  Simulations by Chiu and Ginsberg (2011) indicated that route-to-route dose conversions are not 

very sensitive to the choice of dose metric; other metrics yielded route-to-route conversions within 

1.4-fold of the conversion resulting from blood AUC.  

EPA (2012a) also used the Chiu and Ginsberg (2011) model for interspecies extrapolations in the cancer 

risk assessment.  For extrapolation from mice to humans in the assessment of liver tumors, the total rate 

of oxidative metabolism was used as the dose metric; AUC for trichloroacetic acid in the liver was also 

evaluated for comparison purposes.  For mononuclear cell leukemia in rats, the AUC of the parent 

compound in blood was used as a dose metric, as the proximate toxicant for this neoplasm is not known.  

Parent compound AUC in blood was also selected as the internal dose metric for renal tumors in rats; this 

metric was chosen in light of the substantial uncertainty in model predictions for GSH conjugation in 

humans.  

3.5  MECHANISMS OF ACTION 

3.5.1 Pharmacokinetic Mechanisms 

The absorption, distribution, storage, and excretion of tetrachloroethylene are largely determined by its 

lipophilic nature.  The blood:air partition coefficient estimated for humans is 10–20, the fat:air partition 

coefficient is 1,450–1,638, and the fat:blood partition coefficient is 125–159 (Byczkowski and Fisher 

1994; Gearhart et al. 1993; Ward et al. 1988).  Therefore, tetrachloroethylene is readily taken up by blood 

and is then distributed to fatty tissues where it is retained with a half-life of about 55 hours.  The affinity 

of tetrachloroethylene for fat also results in its translocation into milk (Byczkowski and Fisher 1994). 
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The lipophilicity of this compound may also lead to diminished absorption of tetrachloroethylene 

administered orally in an oil vehicle compared with water-soluble vehicles. 

Effect of Dose and Duration of Exposure on Toxicity. Available data show saturation of the oxidative 

metabolic pathways for tetrachloroethylene in rats and mice (Pegg et al. 1979; Reitz et al. 1996), with 

limited evidence for saturation in humans exposed to high airborne concentrations (Ohtsuki et al. 1983; 

Seiji et al. 1989).  In contrast, there is no evidence for saturation of metabolism via glutathione 

conjugation, which represents a relatively small fraction of the metabolic fate of tetrachloroethylene 

administered either orally or via inhalation, in the available data.  However, there is a great deal of 

uncertainty in the degree of glutathione conjugation versus oxidative metabolism of tetrachloroethylene in 

humans (Chiu and Ginsberg 2011), and it is possible that high exposures may lead to nonlinearities in the 

production and elimination of downstream metabolites of this pathway. 

Route Dependent Toxicity. In humans, exposure route has only a small impact on the pharmacokinetic 

fate of tetrachloroethylene.  PBPK simulations have suggested that the total metabolism of 

tetrachloroethylene is about twice as high after oral exposure of humans compared with inhalation 

exposure (Chiu and Ginsberg 2011); regardless of route, ≥80% of tetrachloroethylene is not metabolized.  

In rats, the route differences in metabolism are similar to those in humans (Chiu and Ginsberg 2011).  In 

mice, however, oral exposure results in oxidative metabolism of about 60% of the administered dose, 

while only 20% is metabolized after inhalation (Chiu and Ginsberg 2011). The differences in total, 

oxidative, and conjugative metabolism are important predictors of target organ and toxicity because the 

parent compound, oxidative metabolites, and glutathione metabolites are believed to be (or be converted 

to) the proximate toxicants associated with neurotoxicity, hepatotoxicity and liver tumors, and renal 

toxicity and tumors, respectively (Bale et al. 2005; Benane 1996; Briving et al. 1986; Green 1990; 

Kyrklund et al. 1984, 1990; Lash and Parker 2001; Lash et al. 1998, 2002, 2007; Shafer et al. 2005), as 

discussed below. 

3.5.2 Mechanisms of Toxicity 

Based on effects reported in humans and in animal studies, the primary targets for tetrachloroethylene 

toxicity are the nervous system, kidney, and liver; the immune system may also be affected, although data 

on this end point are limited. 
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Neurological Effects. Experimental studies in rodents have shown that tetrachloroethylene alters the 

fatty acid pattern of brain phospholipids and amino acids (Briving et al. 1986; Kyrklund et al. 1984, 1987, 

1988, 1990), which could be partially responsible for tetrachloroethylene-induced neurotoxic effects. 

Alternatively, the effects of tetrachloroethylene on the central nervous system may result from the 

incorporation of this lipophilic compound into brain membranes, which may alter neural conduction 

velocity.  A study by Wang et al. (1993), which examined neuronal and glial cell markers in different 

regions of the brain in rats exposed to tetrachloroethylene, suggests that the frontal cerebral cortex is more 

sensitive to tetrachloroethylene than other regions of the brain and that cytoskeletal elements are more 

sensitive than cytosolic proteins. 

Other studies have shown that tetrachloroethylene can interfere with voltage-gated channels and neuronal 

receptors. Shafer et al. (2005) demonstrated that tetrachloroethylene perturbs whole-cell calcium currents 

in nerve growth factor-differentiated pheochromocytoma (P12) cells.  An in vitro study found that 

Xenopus oocytes exposed to tetrachloroethylene at 0.065 mM showed marked inhibition (40–62%) of 

human and rat neuronal nicotinic acetylcholine receptors (Bale et al. 2005). Related compounds, 

including trichloroethylene, exhibit effects on a wide range of inhibitory and excitatory receptors and ion 

channels (reviewed by Bale et al. 2011).  Additional data regarding the mechanisms by which 

tetrachloroethylene produces changes in the central nervous system are needed. 

Hepatic Effects.  In contrast to nervous system effects, which are thought to be a result of 

tetrachloroethylene itself, effects on the liver, including cancer in mice, are thought to be a result of 

metabolism to oxidative metabolites, including trichloroacetic acid and dichloroacetic acid (Benane et al. 

1996).  Rodents, especially mice, produce more trichloroacetic acid than humans (Hattis et al. 1990). In 

addition, the trichloroacetic acid appears to be preferentially localized in the liver after oral exposure; 

Green et al. (2001) showed that gavage administration of tetrachloroethylene in mice resulted in the 

formation of trichloroacylated protein adducts in the liver, primarily in the centrilobular zones, and not in 

other organs.  

Hepatic peroxisome proliferation induced in mice by trichloroacetic acid may play a role in the liver 

carcinogenicity of tetrachloroethylene in this species. A study by Maloney and Waxman (1999) showed 

that trichloroacetic acid and dichloroacetic acid, but not the parent tetrachloroethylene compound, 

activated mouse and human peroxisome proliferator-activated receptor (PPAR) receptor α (highly 

expressed in the liver of rodents; less highly expressed in the human liver) expressed in COS-1 cells. The 
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role of peroxisome proliferation in hepatocarcinogenicity appears may involve induction of peroxisomal 

enzymes that produce hydrogen peroxide as a byproduct without inducing catalase. In addition, 

peroxisome proliferators may promote endogenous lesions by sustained DNA synthesis and hyperplasia, 

which may be sufficient for tumor formation (Bentley et al. 1993). 

Some data indicate that exposure to tetrachloroethylene itself (at concentrations approximating the blood 

levels attained by exposed human subjects, 1.5 μg/mL) induces toxicity (measured as the release of AST 

and LDH and reduction in mitochondrial reducing activity) and lipid peroxidation (measured as 

thiobarbituric acid reactive substances production) in rat hepatocytes exposed in vitro (Costa et al. 2004). 

Increased cytotoxicity (MTT assay) was also observed in isolated rat hepatocytes treated with 

tetrachloroethylene in the range of 3 to 49 mM (Zapór et al. 2002).  The increased production of hydrogen 

peroxide may increase DNA damage. 

An in vitro study suggests that tetrachloroethylene can directly affect hepatocytes.  Vapor exposure of rat 

hepatocytes to tetrachloroethylene (2–4 μL) significantly decreased the hepatocyte uptake of taurocholate, 

ouabain, and 2-aminoisobutyric acid, all substances that require adenosine 5'-triphosphate (ATP) for 

uptake (Kukongviriyapan et al. 1990).  The uptake of cadmium and 3-O-methyl-D-glucose, substances 

that do not require ATP, was not affected.  Cellular ATP was decreased by tetrachloroethylene, but only 

at cytotoxic levels. Tetrachloroethylene also decreased membrane ATPase activity, leading the 

investigators (Kukongviriyapan et al. 1990) to hypothesize that the effect of tetrachloroethylene on 

transport may result from both a decrease in ATP levels and an inhibition of cell membrane ATPases. 

Another in vitro study (Benane et al. 1996) showed that tetrachloroethylene and its metabolites, 

trichloroacetic acid and dichloroacetic acid, effectively inhibited gap junction intercellular 

communication in rat hepatocytes; this reduction in intercellular communication is thought to play an 

important role in tumor promotion. 

Although P-450 metabolism is critical for tetrachloroethylene-induced liver toxicity, the relative 

contribution of GSH conjugation to effects in this target organ has not been fully elucidated.  In a study 

conducted using isolated rat liver cells, Lash et al. (2007) showed that cytotoxicity was not dependent on 

P-450 metabolism alone, since significant toxicity was observed despite perturbations to the P-450 

pathway.  Although S-(1,2,2-trichlorovinyl)glutathione generated in the liver is thought to be transported 

to the kidneys, alterations in the GSH status of liver cells influence toxicity induced by 

tetrachloroethylene.  Decreased cellular GSH enhanced, while increased cellular GSH diminished, 
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tetrachloroethylene-induced cytotoxicity in hepatocytes (Lash et al. 2007), suggesting that interactions 

between these metabolic pathways likely contribute to liver toxicity. 

Renal Effects. A low incidence of kidney cancer has been observed in male rats following inhalation 

exposure to tetrachloroethylene (NTP 1986).  Kidney cancer may in part be a result of the formation of 

the genotoxic metabolites from S-(1,2,2-trichlorovinyl)glutathione catalyzed by β-lyase, CYP3A, or 

flavin-containing oxygenases, or from cellular damage and regeneration associated with lipid 

peroxidation from glutathione depletion.  In agreement, the increased susceptibility of male rats to renal 

tumors correlates with increased S-(1,2,2-trichlorovinyl)glutathione formation in male rats relative to 

female rats (Lash et al. 1998).  Treatment of renal cells with tetrachloroethylene or S-(1,2,2-trichloro-

vinyl)glutathione in vitro at up to 10 mM induced cytotoxicity, as measured by increased leakage of LDH 

from cells and/or compromised respiratory function of mitochondria (inhibition of state 3 respiration) 

(Lash et al. 2002, 2007).  In addition, NAcTCVC and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine 

sulfoxide (at 0.1 mM) were shown to be cytotoxic to rat renal epithelial cells, with the sulfoxide conjugate 

being more toxic than its mercapturic acid (Werner et al. 1996). Taken together, these data suggest that 

GSH conjugation of tetrachloroethylene likely plays a significant role in tetrachloroethylene-induced 

renal toxicity.  In contrast, modulation of P-450 activity (using specific or nonselective inhibitors or 

inducers) had no significant effect on tetrachloroethylene-induced kidney toxicity (Lash et al. 2007). 

Tetrachloroethylene has also been shown to selectively affect the tubular S2 segment in the kidney of 

male rats through the accumulation of α-2μ-globulin (Bergamaschi et al. 1992). This mechanism of renal 

effects observed in male rats may not be relevant to human risk assessment because humans do not 

produce α-2μ-globulin or proteins in the same family (lipocalin) in large quantities as observed in male 

rats (Swenberg et al. 1989). However, the histopathology findings in male rats in the two inhalation 

bioassays of tetrachloroethylene (NTP 1986; JISA 1993) were not consistent with α-2μ-globulin 

nephropathy (NRC 2010).  In addition, similar renal effects were observed in female rats and both sexes 

of mice (JISA 1993; NRC 1986), providing additional evidence against α-2μ-globulin-mediated effects. 

Taken in conjunction with evidence for injury associated with glutathione metabolites of 

tetrachloroethylene, the available information indicates that accumulation of α-2μ-globulin is not the 

primary mechanism of renal toxicity and carcinogenicity associated with tetrachloroethylene exposure. 

Immune Effects. Data from Seo et al. (2008b) showed that exposure to tetrachloroethylene (at 0.1– 

1 mg/L) increased histamine release in rat peritoneal mast (NPMC) and basophilic leukemia (RBL-2H3) 

cells. Treatment with tetrachloroethylene also increased mRNA expression of IL-4 (p<0.05) and TNF-α 
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(p>0.05) as well as the production of these mediators (p<0.05 for both) in RBL-2H3 cells. A dose-

dependent increase in antigen-induced histamine release from mouse bone marrow cells treated with 

tetrachloroethylene was reported in another study from this laboratory (Seo et al. 2012). These data 

suggest possible mechanisms for tetrachloroethylene-induced perturbation of the immune response to 

allergens, and exacerbation of inflammation. An in vitro study by Kido et al. (2013) also showed effects 

on pro-inflammatory cytokine gene expression.  Significant (p<0.05) increases in the expression of IL-6 

and IL-10 mRNA were observed in murine macrophage cells exposed to 800 μg/mL tetrachloroethylene. 

However, cell viability was significantly diminished at this concentration, and exposure to a higher 

concentration (1,000 μg/mL) yielded mRNA levels comparable to controls, so a clear dose-response 

relationship was not demonstrated. 

3.5.3 Animal-to-Human Extrapolations 

The difference in the toxic action of tetrachloroethylene in rats and mice correlates well with differences 

in the metabolism of the compound.  Mice, which are more sensitive to the liver effects of 

tetrachloroethylene than rats, produce more trichloroacetic acid.  Production of trichloroacetic acid in 

mice may result in peroxisome proliferation, a response to chemical exposure that is minimal in humans 

(Bentley et al. 1993).  Therefore, for liver effects, the mouse may not be the most appropriate model for 

humans. 

Although rats produce lower amounts of the intermediate S-(1,2,2-trichlorovinyl)glutathione in either 

kidney or liver cytosol or microsomes tested in vitro (Lash and Parker 2001), this species appears to have 

greater potential than mice for producing reactive intermediates in the kidney from the glutathione 

conjugate of tetrachloroethylene through the activity of kidney β-lyase (Green et al. 1990). The increased 

production of reactive metabolites may explain the higher sensitivity of rats to renal effects when 

compared with mice. Male rats also develop α-2μ-globulin nephropathy following exposure to 

tetrachloroethylene.  Due to the potential contribution of α-2μ-globulin nephropathy in the observed 

kidney effects, the male rat is a relatively poor model for humans. 

Nervous system effects have been well documented in humans.  Although tetrachloroethylene is thought 

to be responsible for the nervous system effects, the possible role of metabolites has not been well 

studied.  If tetrachloroethylene is the active nervous system toxicant, metabolism to trichloroacetic acid 

may serve to reduce nervous system toxicity.  Therefore, rats, which metabolize less tetrachloroethylene 
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to trichloroacetic acid than mice (Hattis et al. 1990), may serve as a better model of nervous system 

effects in humans. 

3.6  TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS 

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Thomas and Colborn (1992), was also used in 1996 when Congress mandated the EPA to 

develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”. To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 

1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine 

disruptors. In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 

(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminology of substances capable of affecting the endocrine system remains controversial, 

scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 

No studies were located regarding endocrine disruption in humans or animals after exposure to 

tetrachloroethylene. 
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No in vitro studies were located regarding endocrine disruption of tetrachloroethylene. 

3.7  CHILDREN’S SUSCEPTIBILITY 

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when all biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to hazardous chemicals, but whether there is 

a difference depends on the chemical (Guzelian et al. 1992; NRC 1993).  Children may be more or less 

susceptible than adults to health effects, and the relationship may change with developmental age 

(Guzelian et al. 1992; NRC 1993).  Vulnerability often depends on developmental stage.  There are 

critical periods of structural and functional development during both prenatal and postnatal life, and a 

particular structure or function will be most sensitive to disruption during its critical period(s).  Damage 

may not be evident until a later stage of development.  There are often differences in pharmacokinetics 

and metabolism between children and adults.  For example, absorption may be different in neonates 

because of the immaturity of their gastrointestinal tract and their larger skin surface area in proportion to 

body weight (Morselli et al. 1980; NRC 1993); the gastrointestinal absorption of lead is greatest in infants 

and young children (Ziegler et al. 1978).  Distribution of xenobiotics may be different; for example, 

infants have a larger proportion of their bodies as extracellular water, and their brains and livers are 

proportionately larger (Altman and Dittmer 1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 

1966; Widdowson and Dickerson 1964).  The fetus/infant has an immature (developing) blood-brain 

barrier that past literature has often described as being leaky and poorly intact (Costa et al. 2004). 

However, current evidence suggests that the blood-brain barrier is anatomically and physically intact at 

this stage of development, and the restrictive intracellular junctions that exist at the blood-CNS interface 

are fully formed, intact, and functionally effective (Saunders et al. 2008, 2012). 
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However, during development of the blood-brain barrier, there are differences between fetuses/infants and 

adults which are toxicologically important. These differences mainly involve variations in physiological 

transport systems that form during development (Ek et al. 2012).  These transport mechanisms (influx and 

efflux) play an important role in the movement of amino acids and other vital substances across the 

blood-brain barrier in the developing brain; these transport mechanisms are far more active in the 

developing brain than in the adult.  Because many drugs or potential toxins may be transported into the 

brain using these same transport mechanisms—the developing brain may be rendered more vulnerable 

than the adult.  Thus, concern regarding possible involvement of the blood-brain barrier with enhanced 

susceptibility of the developing brain to toxins is valid.  It is important to note however, that this potential 

selective vulnerability of the developing brain is associated with essential normal physiological 

mechanisms; and not because of an absence or deficiency of anatomical/physical barrier mechanisms. 

The presence of these unique transport systems in the developing brain of the fetus/infant is intriguing; as 

it raises a very important toxicological question as to whether these mechanisms provide protection for 

the developing brain or do they render it more vulnerable to toxic injury.  Each case of chemical exposure 

should be assessed on a case-by-case basis.  Research continues into the function and structure of the 

blood-brain barrier in early life (Kearns et al. 2003; Saunders et al. 2012; Scheuplein et al. 2002). 

Many xenobiotic metabolizing enzymes have distinctive developmental patterns. At various stages of 

growth and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns who all have a low glomerular filtration rate and have not developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 
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alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 

Studies in mice suggest that tetrachloroethylene can cross the placenta and that trichloroacetic acid 

concentrates in the fetus (Ghantous et al. 1986).  Unmetabolized tetrachloroethylene has been excreted in 

breast milk and was detected in an exposed infant with liver damage (Bagnell and Ellenberger 1977).  

Intake from tetrachloroethylene-contaminated water is expected to be greater in children than adults 

because children tend to drink more water on a per-kg body weight basis than adults, but this has not been 

experimentally determined.  Absorption of tetrachloroethylene following exposure appears to be similar 

in adults and children, as in vitro blood:gas partition coefficients obtained by Mahle et al. (2004) suggest 

no age-related difference in partitioning between pediatric and adult blood.  In support, PBPK modeling 

does not predict age-dependent variations in steady-state blood concentrations (Sarangapani et al. 2003).  

However, PBPK modeling predicts that metabolite blood concentration increases with age, associated 

with a concomitant increase in hepatic enzyme activity with age, indicating lower ability to metabolize 

tetrachloroethylene during early life stages (Clewell et al. 2004; Sarangapani et al. 2003).  As the parent 

compound may mediate neurotoxic effects of exposure (see Section 3.5.2. Mechanisms of Toxicity), this 

decrease in metabolic capacity may confer increased risk to the developing nervous system.  However, in 

vitro organ:air partition coefficients indicate lower fat:air, muscle:air, and brain:air coefficients in pups 

compared with adult rats, suggesting decreased distribution of tetrachloroethylene in the young (Mahle et 

al. 2004).  

The data available for assessing the potential susceptibility of infants and children to the toxic effects of 

tetrachloroethylene are very limited. Results of some epidemiological studies indicate that exposure to 

tetrachloroethylene in the drinking water, ambient air, or workplace environments in utero or during early 

childhood may be associated with developmental effects such as increased rates of spontaneous abortion 

(Ahlborg 1990; Bosco et al. 1986; Doyle et al. 1997; Hemminki et al. 1980; Kyyrönen et al. 1989; 

Lindbohm et al. 1990; Windham 1991), ocular and auditory defects and other central nervous system 

abnormalities (Lagakos et al. 1986), oral cleft defects (Aschengrau et al. 2009; Bove et al. 1995), neural 

tube defects (Aschengrau et al. 2009), cardiac defects (Forand et al. 2012), impaired immunity (Lagakos 

et al. 1986), and increased risk of mental illness as adults (Aschengrau et al. 2012; Perrin et al. 2007).  

However, the data supporting a cause-and-effect relationship for these effects are inadequate. Results of 

some animal studies indicate that tetrachloroethylene can cause reduced fetal weight and increased 

skeletal and soft-tissue anomalies (Carney et al. 2006; Schwetz et al. 1975; Szakmáry et al. 1997; Tepe et 

al. 1980), decreased litter size (Narotsky and Kavlock 1995), neurobehavioral changes (Nelson et al. 
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1980; Fredriksson et al. 1993), neurochemical changes (Nelson et al. 1980), and brain composition 

alterations (Kyrklund and Haglid 1991). 

3.8  BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

The National Report on Human Exposure to Environmental Chemicals provides an ongoing assessment 

of the exposure of the U.S. population to environmental chemicals using biomonitoring.  This report is 

available at http://www.cdc.gov/exposurereport/.  The biomonitoring data for tetrachloroethylene from 

this report is discussed in Section 6.5.  A biomarker of exposure is a xenobiotic substance or its 

metabolite(s) or the product of an interaction between a xenobiotic agent and some target molecule(s) or 

cell(s) that is measured within a compartment of an organism (NAS/NRC 1989).  The preferred 

biomarkers of exposure are generally the substance itself, substance-specific metabolites in readily 

obtainable body fluid(s), or excreta.  However, several factors can confound the use and interpretation of 

biomarkers of exposure.  The body burden of a substance may be the result of exposures from more than 

one source. The substance being measured may be a metabolite of another xenobiotic substance (e.g., 

high urinary levels of phenol can result from exposure to several different aromatic compounds).  

Depending on the properties of the substance (e.g., biologic half-life) and environmental conditions (e.g., 

duration and route of exposure), the substance and all of its metabolites may have left the body by the 

time samples can be taken.  It may be difficult to identify individuals exposed to hazardous substances 

that are commonly found in body tissues and fluids (e.g., essential mineral nutrients such as copper, zinc, 

and selenium).  Biomarkers of exposure to tetrachloroethylene are discussed in Section 3.8.1. 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific. They also may not be directly 

adverse, but can indicate potential health impairment (e.g., DNA adducts).  Biomarkers of effects caused 

by tetrachloroethylene are discussed in Section 3.8.2. 
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A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are 

discussed in Section 3.10, Populations That Are Unusually Susceptible. 

3.8.1 Biomarkers Used to Identify or Quantify Exposure to Tetrachloroethylene 

Biological monitoring for exposure to tetrachloroethylene is possible by measuring levels of the parent 

compound in the blood, urine, or exhaled air or trichloroacetic acid in the blood or urine.  Biological 

monitoring for tetrachloroethylene exposure has been performed to measure both exposure occurring in 

the workplace and the environmental exposure of individuals at places other than the work site.  In these 

instances, it has been demonstrated that measurement of tetrachloroethylene in exhaled air is a fairly 

simple, effective, and noninvasive method for assessing both occupational and nonoccupational exposure 

(Stewart and Dodd 1964; Stewart et al. 1961b, 1970, 1981).  Tetrachloroethylene is excreted in the breath 

for long periods after exposure and is measurable on Monday morning following exposure the previous 

week (Monster et al. 1983).  In an experimental exposure study, Stewart et al. (1981) found that breath 

concentrations reached equilibrium with exposure concentrations on the third day of each week.  Based 

on breath analysis decay curves, Stewart et al. (1981) concluded that 16.5 hours after a male worker has 

been exposed to tetrachloroethylene in air at 100 ppm for 7.5 hours, his breath level should not exceed 

10 ppm, while breath concentrations of a female worker should not exceed 6 ppm.  Following 3 hours of 

exposure at 100 ppm, breath levels at 21 hours postexposure should not exceed 5 and 1 ppm for males and 

females, respectively. 

In the experimental exposure studies of Stewart et al. (1961b, 1970, 1981), analysis of the expired breath 

of exposed subjects for tetrachloroethylene proved to be superior to both blood and urine analyses for 

determining the magnitude of the previous vapor exposure.  A series of Breath Decay Curves was 

constructed following vapor exposures to 20, 50, 100, 150, and 200 ppm for 1, 3, and 7.5 hours, repeated 

for 5 days each, which permitted the estimation of the magnitude of the previous exposure.  Utilizing the 

30-second breath-holding technique to collect breath samples, these Breath Decay Curves provide an 

efficient method for determining whether overexposure has occurred (Stewart et al. 1961a, 1981). 
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The concentration of tetrachloroethylene in exhaled air was used to measure environmental exposure in a 

group of 54 healthy volunteers from an urban population (Krotoszynski et al. 1979).  In this group of 

subjects, it was determined that 30.2% had traces of tetrachloroethylene in their breath, with a mean 

concentration of 2.6 ng/m3 .  The measurement of tetrachloroethylene in exhaled air showed that 93% of a 

sample of about 300 nonoccupationally exposed residents of Bayonne and Elizabeth, New Jersey, had 

measurable concentrations of tetrachloroethylene in their breath (Wallace 1986).  The mean concentration 

of tetrachloroethylene in the breath in this study was 13.3 μg/m3, and this mean concentration was 

increased to 22 μg/m3 for persons who had visited a dry cleaning establishment. Measurements of 

tetrachloroethylene in exhaled air were used to determine exposure in children attending a school near a 

factory and in occupants of a senior citizens home located near a former chemical waste dump.  A control 

group of children had a mean tetrachloroethylene level in their exhaled air of 2.8 μg/m3, whereas exposed 

children had a mean tetrachloroethylene level of 24 μg/m3 . In the senior citizens group, people living on 

the first floor of the home had a mean tetrachloroethylene level of 7.8 μg/m3, whereas people living on the 

second floor and above had a mean tetrachloroethylene level of 1.8 μg/m3 . It was concluded that 

biological monitoring of tetrachloroethylene in exhaled air was an effective method of assessing total 

ambient tetrachloroethylene exposure in both the young and the aged (Monster and Smolders 1984). 

Biological monitoring for recent, as opposed to more remote, exposure to tetrachloroethylene has also 

been performed by measuring concentrations of tetrachloroethylene and its principal metabolite, 

trichloroacetic acid, in blood and urine.  However, trichloroacetic acid is not specific for 

tetrachloroethylene because it is also produced from the metabolism of trichloroethylene and 

1,1,1-trichloroethane (Monster 1988).  In a study of occupationally exposed individuals, measurements of 

tetrachloroethylene and trichloroacetic acid in the blood 15–30 minutes after the end of the workday at the 

end of the week were judged to be the best parameters for estimating exposure to the chemical.  The best 

noninvasive method for determining tetrachloroethylene exposure was to measure the concentration of the 

parent compound in exhaled air.  After exposure to a TWA concentration of 50 ppm of tetrachloro-

ethylene, the estimated concentrations of tetrachloroethylene and trichloroacetic acid in blood were 

2.2 and 5.4 mg/L, respectively; the concentration of tetrachloroethylene in exhaled air was estimated to be 

22.5 ppm (Monster et al. 1983).  In another study of workers exposed to tetrachloroethylene, urinary 

metabolites were related to vapor concentrations up to 50 ppm, but little additional increase occurred at 

higher concentrations (Ikeda et al. 1972). The ACGIH biological exposure index (BEI) associated with a 

TWA concentration of 25 ppm tetrachloroethylene is 0.5 mg tetrachloroethylene/L in blood and 3 ppm in 

end-exhaled air (ACGIH 2012).  Jang et al. (1997) observed differences in tetrachloroethylene 
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metabolism between persons of Caucasian and Asian descent in a controlled human exposure study, with 

higher levels of tetrachloroethylene measured in exhaled breath of Caucasians. 

3.8.2 Biomarkers Used to Characterize Effects Caused by Tetrachloroethylene 

Hepatocellular damage and icterus have been related to exposure to tetrachloroethylene.  Biomarkers of 

hepatic cell death, which are not specific for tetrachloroethylene, are increases in serum levels of 

intracellular liver enzymes including SGOT, SGPT, and LDH.  Biomarkers of icterus include increased 

serum levels of bilirubin and alkaline phosphatase and increased urobilinogen in urine (Bagnell and 

Ellenberger 1977; Coler and Rossmiller 1953; Hake and Stewart 1977; Meckler and Phelps 1966; Stewart 

1969).  Electrophoresis of serum GGT enzymes from tetrachloroethylene-exposed workers with no other 

evidence of liver effects (SGOT, SGPT, serum alkaline phosphatase, LDH, and 5'-nucleotidase) has 

shown increases in GGT-2 and the appearance of GGT-4, which was not present in the serum of the 

unexposed controls (Gennari et al. 1992).  The investigators indicate that further research is required to 

determine if changes in GGT enzymes are useful for detecting early liver changes induced by 

tetrachloroethylene.  As increases in GGT also occur with fatty livers, pancreatitis, and following 

exposure to other xenobiotics (Suber 1989), this liver effect is not specific for tetrachloroethylene.  

Parenchymal changes detected by ultrasound may also be a useful noninvasive marker of liver effects 

(Brodkin et al. 1995), although it also is not specific for tetrachloroethylene. 

Biomarkers of renal damage are not specific for solvents.  For clinical renal damage, these include 

increased BUN and serum creatinine and abnormal urinalysis findings.  Increased urinary levels of 

lysozyme and the lysosomal enzyme, N-acetyl-beta-D-glucuronidase, albuminuria, and other urinary 

markers suggesting increased shedding of epithelial membrane components from tubular cells may 

indicate subclinical renal damage in workers exposed to a potentially nephrotoxic chemical (Franchini et 

al. 1983; Meyer et al. 1984; Mutti et al. 1992; Viau et al. 1987). Voss et al. (2005) evaluated the available 

data supporting a variety of potential biomarkers for early detection of renal damage from solvents.  Data 

were sufficient for evaluation of only three: urinary albumin, β2-microglobulin, and NAG.  The authors 

concluded that, because increased albumin excretion was frequently seen in exposed workers, this 

parameter might be suitable for biomonitoring for renal effects. However, the authors noted the 

uncertainties stemming from their simplistic analysis, which did not take into account variations in 

exposure intensity and duration.  In addition, the authors cautioned that factors associated with 

albuminuria, including strenuous exercise prior to sampling, as well as diabetic nephropathy and 

hypertension, need to be considered in the interpretation of urinary albumin levels (Voss et al. 2005). 
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Neurotoxic effects manifested in the central nervous system have been associated with acute and chronic 

exposure of humans to tetrachloroethylene. These effects may be monitored by evaluation of symptoms, 

neurological examination, and neuropsychological testing (Gregersen et al. 1984).  Neurological effects 

are not specific for tetrachloroethylene. Therefore, other causes of neurological disease must be ruled out 

before effects are attributed to tetrachloroethylene exposure. 

3.9 INTERACTIONS WITH OTHER CHEMICALS 

The potential interactions between tetrachloroethylene and other chlorinated solvents are discussed in 

detail by ATSDR (Agency for Toxic Substances and Disease Registry 2004).  As concluded by ATSDR 

(Agency for Toxic Substances and Disease Registry 2004), there are no studies available that directly 

characterize health hazards and dose-response relationships for exposures to mixtures of chlorinated 

solvents with tetrachloroethylene. The limited available data indicate no evidence for greater-than-

additive joint toxic actions on the liver and kidney; there is some evidence that tetrachloroethylene may 

inhibit the effect of trichloroethylene on the liver and kidney (Goldsworthy and Popp 1987; Seiji et al. 

1989).  Potential interactions between tetrachloroethylene and other common indoor air contaminants 

(carbon monoxide, formaldehyde, methylene chloride, and nitrogen dioxide) are discussed by ATSDR 

(Agency for Toxic Substances and Disease Registry 2007b). While several of these compounds exert 

toxic effects on the same target sites, there are no data to evaluate potential interactions among them. 

The hepatic monooxygenase system is primarily responsible for oxidation of tetrachloroethylene. Thus, 

compounds that stimulate or induce tetrachloroethylene metabolism could influence the toxicity 

associated with exposure to this chemical.  Results of experiments that have investigated possible 

enhancement of tetrachloroethylene-induced toxicity by increasing tetrachloroethylene metabolism have 

been equivocal.  Pretreatment of rats with ethanol (Cornish and Adefuin 1966; Klaassen and Plaa 1966) 

and phenobarbital (Cornish et al. 1973; Moslen et al. 1977) failed to enhance tetrachloroethylene hepatic 

toxicity.  Pretreatment with polychlorinated biphenyls (PCBs), on the other hand, increased urinary 

excretion of tetrachloroethylene metabolites in rats and enhanced tetrachloroethylene-induced 

hepatotoxicity (Moslen et al. 1977). 

A study was conducted to evaluate the potential interaction between tetrachloroethylene and ethanol, or 

tetrachloroethylene and diazepam (Stewart et al. 1977).  Twelve healthy volunteers of each sex were 

exposed to 0, 25, or 100 ppm tetrachloroethylene vapor alone or in combination with either ethanol (0.0, 
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0.75, or 1.5 mL vodka/kg body weight) or diazepam (0, 6, or 10 mg/day).  The subjects exhibited a 

decrement in performance of at least one of the behavioral or neurological tests while on either drug alone 

at the highest dose level, but no interaction with tetrachloroethylene resulting in additional test 

performance decrement could be demonstrated for either combination of solvent vapor and drug. 

Giovannini et al. (1992) examined the interaction of ethanol and tetrachloroethylene on the hepatic 

toxicity in rats.  Rats were exposed to 15% ethanol in the drinking water and/or to tetrachloroethylene 

aerosol for 10 minutes/day for 4 weeks.  The tetrachloroethylene concentration used was not provided, 

but can be assumed to be very high because the rats were unconscious by the end of the 10-minute 

exposure period.  Liver effects, necrotic foci, steatosis, and lymphocyte infiltration were worse after 

ethanol exposure compared to tetrachloroethylene exposure alone.  When the rats were treated with both 

compounds, tetrachloroethylene tended to reduce the hepatic effects of ethanol.  Giovannini et al. (1992) 

suggest that the reduction of ethanol hepatic effects by tetrachloroethylene is a result of a metabolic 

interaction between ethanol and tetrachloroethylene. 

In a study of dry cleaning workers in China, urinary metabolite levels (total trichloro compounds) were 

reduced when workers were exposed to mixtures of tetrachloroethylene and trichloroethylene, as opposed 

to trichloroethylene alone (Seiji et al. 1989).  The effect on the trichloroethylene metabolite, trichloro-

ethanol, was greatest, with little effect on trichloroacetic acid, a metabolite of both trichloroethylene and 

tetrachloroethylene.  The study authors indicated that because of the smaller amount of tetrachloro-

ethylene metabolized, it was not possible to determine if trichloroethylene suppressed the metabolism of 

tetrachloroethylene.  Concurrent administration of tetrachloroethylene and trichloroethylene to mice did 

not result in additive or synergistic effects in induction of hepatic peroxisomal proliferation as measured 

by cyanide-insensitive palmitoyl CoA oxidation activity (Goldsworthy and Popp 1987).  This may be 

related to preferential metabolism of trichloroethylene at the dose levels used. 

Combined oral treatment of rats with tetrachloroethylene (3,000 mg/kg/day) and vitamin E 

(400 mg/kg/day) prevented the centrilobular necrosis in the liver and hypercellular glomeruli and 

congestion of convoluted tubules of the kidneys that was observed when rats were treated with 

tetrachloroethylene alone (Ebrahim et al. 1996). Vitamin E also prevented the tetrachloroethylene-

induced increase in protein and protein-bound carbohydrates observed in the liver and kidneys of rats 

treated only with tetrachloroethylene. This study suggests that free radical metabolites may play a role in 

the liver and kidney toxicity observed in rats treated with tetrachloroethylene. A follow-up study by this 

group further examined the potential protective properties of 2DG and vitamin E, as well as taurine, 
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against tetrachloroethylene-induced membrane damage (Ebrahim et al. 2001).  All three treatments 

reduced the membrane damage caused by tetrachloroethylene. 

Tetrachloroethylene may sensitize the myocardium to effects of other chemicals.  For example, high 

doses of intravenously administered tetrachloroethylene have been found to sensitize the myocardium to 

the presence of exogenous epinephrine (Kobayashi et al. 1982).  However, Reinhardt et al. (1973) did not 

observe sensitization to epinephrine in beagle dogs exposed to vapors of tetrachloroethylene.  

Tetrachloroethylene may also have a direct effect on the heart.  In synergy with alcohol and hypoxia, 

tetrachloroethylene prolonged atrioventricular conduction in the perfused rat heart.  Because of the 

perfused heart model, this effect was not catecholamine-mediated (Kawakami et al. 1988). 

Using the Tradescantia micronucleus assay, Ma et al. (1992) examined the genotoxicity of 

tetrachloroethylene with lead tetraacetate, arsenic trioxide, and dieldrin.  Although tetrachloroethylene, 

dieldrin, and arsenic trioxide were not genotoxic alone, mixtures of tetrachloroethylene with dieldrin or 

arsenic trioxide were genotoxic.  An interaction between tetrachloroethylene and lead tetraacetate was not 

observed.  When mixtures of three chemicals (combination of any three:  tetrachloroethylene, dieldrin, 

arsenic trioxide, and lead tetraacetate) were tested, interactions were also not observed. 

3.10  POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to tetrachloroethylene than will 

most persons exposed to the same level of tetrachloroethylene in the environment.  Reasons may include 

genetic makeup, age, health and nutritional status, and exposure to other toxic substances (e.g., cigarette 

smoke).  These parameters result in reduced detoxification or excretion of tetrachloroethylene, or 

compromised function of organs affected by tetrachloroethylene. Populations who are at greater risk due 

to their unusually high exposure to tetrachloroethylene are discussed in Section 6.7, Populations with 

Potentially High Exposures. 

The elderly with declining organ function and the youngest of the population with immature and 

developing organs (i.e., premature and newborn infants) will be more vulnerable to toxic substances in 

general than healthy adults.  As discussed in Section 3.7 (Children’s Susceptibility), the developing fetus, 

children, and especially the developing nervous system may be particularly susceptible to the toxic effects 

of tetrachloroethylene, potentially due to age-related pharmacokinetic differences.  Studies in mice 

suggest that tetrachloroethylene can cross the placenta and that trichloroacetic acid concentrates in the 
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fetus (Ghantous et al. 1986).  Unmetabolized tetrachloroethylene has been excreted in breast milk and 

was detected in an exposed infant with liver damage (Bagnell and Ellenberger 1977).  As tetrachloro-

ethylene is lipophilic, it is capable of accumulating in the body over time, which may account for the 

observed increase in dose metrics predicted by PBPK models for later life stages (Clewell et al. 2004). 

The lipophilicity of tetrachloroethylene may also result in higher accumulations of the compound in 

exposed persons with higher body fat content; conversely, lower body fat may result in higher blood 

levels of tetrachloroethylene. There are no data on the potential effects of obesity or underweight on 

tetrachloroethylene pharmacokinetics.  Studies in rats indicate that blood:air and organ:air partition 

coefficients are elevated in aged male rats compared with adult male or postnatal day 10 male rats, 

suggesting greater absorption and distribution of tetrachloroethylene among older animals (Mahle et al. 

2004); there are no data on tetrachloroethylene partitioning in aged human blood. 

Certain ethnic populations may also have increased susceptibility to toxicity based on pharmacokinetics 

of tetrachloroethylene, as the amount of tetrachloroethylene metabolized varies among different ethnic 

human populations.  Seiji et al. (1989) reported that the relationship between total urinary trichloro-

compounds and the concentration of tetrachloroethylene in breath air was 0.063 mg trichloroacetic acid/L 

per ppm tetrachloroethylene in Chinese workers, while the value was 0.7 mg trichloroacetic acid/L per 

ppm tetrachloroethylene in Japanese workers. Jang et al. (1997) observed differences in tetrachloro-

ethylene metabolism among different ethnic populations between persons of Caucasian and Asian descent 

in a controlled human exposure study, with higher levels of tetrachloroethylene measured in exhaled 

breath of Caucasians compared with those of Asian descent. Data on differences in the pharmacokinetic 

behavior of tetrachloroethylene in people of other ethnicities were not located in the available literature. 

Patients who had detectable blood levels of VOCs (often more than one chemical) and who had a variety 

of systemic symptoms were classified as “chemically sensitive” by Rea et al. (1987).  Tetrachloroethylene 

was the most common chemical detected in the blood of the “chemically sensitive” individuals who were 

studied (found in 72 of 134 patients).  No controls were used in this study, so it is not clear if tetrachloro-

ethylene is more frequently detected in chemically sensitive individuals and/or if concentrations of 

tetrachloroethylene in the blood are greater in sensitive individuals than in the general population.  Some 

adults also appear to have increased sensitivity to certain systemic effects of tetrachloroethylene (e.g., 

cardiac sensitization) (Abedin et al. 1980).  Since high doses of tetrachloroethylene are known to cause 

liver and kidney effects, persons with clinical or subclinical renal or hepatic disease may be predisposed 

to the effects of tetrachloroethylene.  Persons with preexisting nervous system diseases may also be more 

sensitive to the neurotoxic effects of tetrachloroethylene. 
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3.11  METHODS FOR REDUCING TOXIC EFFECTS 

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to tetrachloroethylene.  However, because some of the treatments discussed may be 

experimental and unproven, this section should not be used as a guide for treatment of exposures to 

tetrachloroethylene.  When specific exposures have occurred, poison control centers and medical 

toxicologists should be consulted for medical advice. The following texts provide specific information 

about treatment following exposures to tetrachloroethylene:  

Dart RC.  2004.  Medical toxicology.  3rd ed.  Philadelphia, PA: Lippincott Williams & Wilkins, 1339-
1341. 

Leikin JB, Paloucek FP. 2002.  Poisoning & toxicology handbook.  3rd ed.  Hudson, OH: Lexi-Comp, 
Inc., 1212-1213. 

Palmer RB, Phillips SD.  2007.  Chlorinated hydrocarbons.  In: Shannon MW, Borron SW, Burns MJ.  
Haddad and Winchester’s clinical management of poisoning and drug overdose.  4th ed.  Philadelphia, PA: 
Saunders Elsevier, 1347-1361. 

3.11.1 Reducing Peak Absorption Following Exposure 

Following suspected overexposure to tetrachloroethylene, the person should be promptly placed under the 

care of a knowledgeable physician.  In the case of vapor exposure, the person should be removed from the 

vapor-contaminated environment and given the standard emergency and supportive treatment.  There is 

no specific antidote.  Anesthetic overexposure may require respiratory assistance and the treatment of 

cardiac arrhythmias.  General recommendations for reducing absorption following acute oral exposure 

have included the administration of water or milk, gastric lavage, and/or administration of a charcoal 

slurry with or without a cathartic (Ellenhorn and Barceloux 1988; HSDB 2013; Stutz and Ulin 1992).  

Induction of emesis is not recommended because of the danger of aspiration resulting in a chemical 

pneumonitis.  In the case of eye exposure, irrigation with copious amounts of water or saline has been 

recommended (Bronstein and Currance 1988; Haddad and Winchester 1990; HSDB 2013; Leikin and 

Paloucek 2002; Stutz and Ulin 1992).  For dermal exposure, the removal of contaminated clothing and a 

thorough washing of any exposed areas with soap and water have been recommended (HSDB 2013; 

Leikin and Paloucek 2002; Stutz and Ulin 1992). 
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3.11.2 Reducing Body Burden 

The body does not retain significant amounts of tetrachloroethylene; most of an absorbed dose is excreted 

within several days of either inhalation or oral exposure (see Section 3.4.4).  However, methods aimed at 

enhancing elimination during this period of retention may be effective in mitigating the serious effects 

that can occur following absorption of tetrachloroethylene.  One possible method for enhancing 

elimination is increasing the ventilation rate.  In a single case report, controlled hyperventilation over a 

5-day period enhanced pulmonary elimination in a 6-year-old boy who had ingested between 12 and 16 g 

of tetrachloroethylene (Koppel et al. 1985). It is emphasized that no clinical treatments, other than 

supportive measures, are currently available to enhance elimination. 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects 

No clear approaches to interfering with the mechanisms of tetrachloroethylene toxicity have emerged 

from the available literature.  Efforts to do so may be stymied by the limited data and variety of 

mechanisms postulated for the known target organs (central nervous system, kidney, and liver), as well as 

the role of pharmacokinetics in the effects on each organ.  Specifically, efforts to alter the metabolism of 

tetrachloroethylene (e.g., to deplete blood levels of parent compound that likely mediate neurotoxicity) 

via stimulation of oxidative metabolism or glutathione conjugation may shift toxicity from the central 

nervous system to the liver or kidney, as toxicity to these organs is believed to be mediated by metabolic 

products from these pathways. Methods for reducing the formation of reactive metabolites in the kidney 

via inhibition of β-lyase or other enzymes in this pathway may be viable options, but are not currently 

available for clinical use. 

3.12  ADEQUACY OF THE DATABASE 

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of tetrachloroethylene is available. Where adequate 

information is not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is 

required to assure the initiation of a program of research designed to determine the health effects (and 

techniques for developing methods to determine such health effects) of tetrachloroethylene. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 
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reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

3.12.1 Existing Information on Health Effects of Tetrachloroethylene 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to 

tetrachloroethylene are summarized in Figure 3-6.  The purpose of this figure is to illustrate the existing 

information concerning the health effects of tetrachloroethylene. Each dot in the figure indicates that one 

or more studies provide information associated with that particular effect. The dot does not necessarily 

imply anything about the quality of the study or studies, nor should missing information in this figure be 

interpreted as a “data need”.  A data need, as defined in ATSDR’s Decision Guide for Identifying 

Substance-Specific Data Needs Related to Toxicological Profiles (Agency for Toxic Substances and 

Disease Registry 1989), is substance-specific information necessary to conduct comprehensive public 

health assessments.  Generally, ATSDR defines a data gap more broadly as any substance-specific 

information missing from the scientific literature. 

Most of the literature regarding health effects in humans comes from studies of workers exposed to 

tetrachloroethylene during occupational uses.  Limited data are available from residential exposure to 

tetrachloroethylene from close proximity to dry cleaning establishments and from contaminated drinking 

water. Case reports describe some of the acute, intermediate, and chronic health effects associated with 

ingestion or inhalation of the chemical.  The predominant mode of exposure in these studies is by 

inhalation. The primary untoward health effects from acute exposure observed in the humans reported in 

these occupational and case studies are the result of central nervous system depression or skin injury. 

According to one case report, direct dermal exposure to tetrachloroethylene reportedly resulted in 

erythema and blistering of the skin.  Transient kidney and liver injury are observed when acute and 

prolonged exposure to higher vapor concentrations occurs.  Acute exposure to high vapor concentrations 

has also resulted in death, from either profound respiratory center depression or cardiac arrhythmia.  

Additional effects potentially associated with chronic exposure include loss of color vision, liver and 

kidney effects, immunological effects, reproductive effects, and cancer.  Most of these studies are limited 

by the inadequate characterization of exposure levels and associated health effects and the lack of control 

for other chemical exposures, socioeconomic status, alcohol consumption, and tobacco consumption.  
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Figure 3-6.  Existing Information on Health Effects of Tetrachloroethylene 
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Experimental exposure studies at concentrations achieved in occupational settings have confirmed 

neurological effects. 

A large number of studies examining the health effects of inhalation of tetrachloroethylene by animals 

were reviewed. There were also a number of studies regarding health effects of ingested 

tetrachloroethylene. Primary target organs and systems in animals include the nervous system, kidney, 

and liver. The mouse is especially susceptible to liver damage leading to increased risk of liver cancer. 

The rat appears to have an increased sensitivity to kidney damage leading to cancers of the kidney.  

Evidence suggests that tetrachloroethylene exposure during gestation affects growth and development, but 

is not overtly teratogenic. The limited dermal exposure studies of tetrachloroethylene in animals indicate 

that the compound can be absorbed following direct application, but the studies have not clearly identified 

any effects. 

3.12.2 Identification of Data Needs 

While the database of toxicity information on tetrachloroethylene is adequate for some end points, 

significant data gaps exist for several end points, including developmental and neurodevelopmental 

toxicity, and immunotoxicity (in both developmental and in adult populations).  Data needs by exposure 

duration and end point are discussed in further detail below; specific research recommendations include 

the following: 

•	 Studies of immunotoxicity and immune function in developing and adult animals and/or in 

human populations exposed to tetrachloroethylene via oral or inhalation routes, for both 

intermediate and chronic durations; 

•	 Additional studies of developmental and neurodevelopmental endpoints in humans or animals 

exposed to tetrachloroethylene via oral or inhalation routes; 

•	 Additional oral bioassays evaluating chronic effects and cancer in animals; and 

•	 Studies of tetrachloroethylene effects in humans or animals exposed dermally. 

In addition, in vivo or in vitro research on interactions between tetrachloroethylene and other constituents 

of commonly-encountered chemical mixtures is needed.  Tetrachloroethylene frequently occurs in 

conjunction with other chlorinated solvents in water from hazardous waste sites (Agency for Toxic 

Substances and Disease Registry 2004) and in conjunction with other indoor air contaminants (Agency 

for Toxic Substances and Disease Registry 2007b); however, few data are available on the toxicity of 
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these mixtures. Finally, research on the potential vulnerability of minority and low-income populations, 

who may be exposed to multiple health stressors in addition to chemical exposure, would be beneficial. 

Acute-Duration Exposure. There are reports on acute tetrachloroethylene exposure of humans and 

animals following inhalation and oral exposure.  The primary targets following acute inhalation and oral 

exposure are the central nervous system (Altmann et al. 1990, 1992; Carpenter 1937; Haerer and 

Udelman 1964; Hake and Stewart 1977; Kendrick 1929; Moser et al. 1995; NTP 1986; Ogata et al. 1971; 

Rowe et al. 1952; Savolainen et al. 1977; Stewart 1969; Stewart et al. 1961a, 1961b, 1970, 1981), kidneys 

(Goldsworthy and Popp 1987), and liver (Berman et al. 1995; Goldsworthy and Popp 1987; Hake and 

Stewart 1977; Hanioka et al. 1995; Kylin et al. 1963; Levine et al. 1981; NTP 1986; Odum et al. 1988; 

Saland 1967; Schumann et al. 1980; Stewart 1969).  

The majority of the human studies are cases involving accidental exposure (Garnier et al. 1996; Koppel et 

al. 1985; Saland 1967), occupational exposure (Levine et al. 1981; Lukaszewski 1979; Morgan 1969; 

Patel et al. 1973), exposure from the use of tetrachloroethylene as an anthelminthic (Kendrick 1929; 

Wright et al. 1937), and exposure from contaminated drinking water (Aschengrau et al. 2012; Getz et al. 

2012; Janulewicz et al. 2008, 2012). However, studies are available that reported the thresholds for 

central nervous system effects in humans resulting from acute-duration inhalation exposures to 

tetrachloroethylene (Altmann et al. 1990, 1992; Carpenter 1937; Hake and Stewart 1977; Rowe et al. 

1952). An acute inhalation MRL could be obtained based on the NOAEL of 2 ppm for human central 

nervous system effects (Altmann et al. 1992); however, PBPK simulations indicate that an MRL obtained 

from this study would not be adequately protective for exposures up to 2 weeks.  Furthermore, since the 

chronic-duration LOAEL of 2 ppm used to obtain the chronic-duration inhalation MRL is the same value, 

the chronic value was adopted for the acute-duration inhalation MRL. Human oral exposure data, limited 

to an accidental exposure (Koppel et al. 1985) and descriptions of the use of tetrachloroethylene as an 

anthelminthic (Chaudhuri and Mukerji 1947; Kendrick 1929; Koppel et al. 1985; Sandground 1941; 

Wright et al. 1937) do not clearly define threshold dosages.  Direct dermal contact with tetrachloro-

ethylene results in chemical burns (Hake and Stewart 1977; Ling and Lindsay 1971; Morgan 1969).  

Additional effects in humans following dermal exposure only have not been conclusively identified. 

There are acute inhalation studies that provide data on lethality (Friberg et al. 1953; NTP 1986) and 

systemic effects in mice including neurotoxic (NTP 1986), hepatic (Kylin et al. 1963; NTP 1986; Odum 

et al. 1988), respiratory (Aoki et al. 1994), and immunotoxic effects (Aranyi et al. 1986), as well as 

neurotoxic effects in rats (Albee et al. 1991; Boyes et al. 2009; Goldberg et al. 1964; Mattson et al. 1998; 
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NTP 1986; Rowe et al. 1952; Savolainen et al. 1977).  There are also oral lethality studies in rats (Berman 

et al. 1995; Hayes et al. 1986) and mice (Philip et al. 2007; Wenzel and Gibson 1951).  Effects noted in 

acute oral studies of tetrachloroethylene in animals include increased liver weight (Berman et al. 1995; 

Goldsworthy and Popp 1987; Hanioka et al. 1995), nephropathy (Goldsworthy et al. 1988; Potter et al. 

1996), decreased body weight gain in rats (Schumann et al. 1980), neurological effects in rats (Moser et 

al. 1995; Warren et al. 1996), and liver hypertrophy (Schumann et al. 1980) in mice.  Interpretation of 

some of these data is difficult because of limitations in the design and conduct of the studies (e.g., 

decreased survival, poor study methodology). 

Oral exposure of young mice to tetrachloroethylene resulted in hyperactivity when the mice were tested 

as adults (Fredriksson et al. 1993); however, metabolic differences between mice and humans exposed 

orally suggest that mice would be a poor model for neurotoxicity in humans.  The chronic-duration oral 

MRL of 0.008 mg/kg/day has been adopted as the acute-duration oral MRL based on PBPK modeling 

results that predict that neurological effects would occur at the same concentration after acute and chronic 

exposures.  Acute dermal exposure data in animals were not identified.  Additional data on dermal 

exposure of animals would be useful to provide threshold levels. The targets that seem to be of greatest 

concern following tetrachloroethylene exposure are the central nervous system, including effects on the 

developing nervous system, the liver, and the kidneys.  Populations living near hazardous waste sites may 

experience acute-duration exposures to tetrachloroethylene via inhalation, oral, or dermal routes as a 

result of accidental releases. 

Intermediate-Duration Exposure. Human data regarding intermediate-duration exposure are 

limited to inhalation studies that reported adverse neurological effects (Abedin et al. 1980; Meckler and 

Phelps 1966) and cardiac sensitization (Abedin et al. 1980).  However, exposure concentrations are not 

well defined in these studies. As with the acute-duration inhalation MRL, the intermediate-duration 

inhalation MRL was set equal to the chronic-duration inhalation MRL (using human data) based on 

PBPK simulations. No human data were located regarding oral or dermal exposure to tetrachloro-

ethylene. The target organs identified in animal studies of intermediate-duration oral or inhalation 

exposure to tetrachloroethylene include the nervous system (Carpenter 1937; Karlsson et al. 1987; 

Kyrklund et al. 1988; Mattsson et al. 1992, 1998; Rosengren et al. 1986), liver (Boverhof et al. 2012; 

Buben and O’Flaherty 1985; Carpenter 1937; Hayes et al. 1986; Jonker et al. 1996; Kjellstrand et al. 

1984; Kylin et al. 1965; Kyrklund et al. 1988; NTP 1986; Odum et al. 1988; Philip et al. 2007; 

Rajamanikandan et al. 2012; Rowe et al. 1985; Story et al. 1986), kidney (Carpenter 1937; Ebrahim et al. 

1996; Green et al. 1990; Hayes et al. 1986; Jonker et al. 1996; NTP 1986; Rowe et al. 1985), and immune 
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system (Seo et al. 2008a, 2012). These studies were conducted in a variety of animal species including 

mice, rats, guinea pigs, and gerbils.  No intermediate-duration dermal studies in animals were located. 

The chronic-duration oral MRL of 0.008 mg/kg/day has been adopted as the intermediate-duration oral 

MRL based on PBPK modeling results indicating that neurological effects occur at the same 

concentration after acute, intermediate, and chronic exposures. The lowest animal LOAEL was for 

neurological effects in rats (Chen et al. 2002).  After conversion to a human equivalent dose, the LOAEL 

(1.8 mg/kg/day) from Chen et al. (2002) is equivalent to the LOAEL (2.3 mg/kg/day) for chronic human 

exposure used to obtain the chronic oral MRL; thus, because the chronic value was derived from human 

data, the chronic-duration oral MRL was adopted as the intermediate-duration oral MRL.  Additional 

animal studies concerning the threshold of nervous system effects following inhalation, oral, and dermal 

exposure to tetrachloroethylene would be especially useful for determining levels of significant exposure 

to tetrachloroethylene that are associated with adverse health effects. 

Two oral exposure studies in rats and mice (Seo et al. 2008a, 2012) have suggested that very low levels of 

tetrachloroethylene in the drinking water of rodents may enhance the immune response to allergens and 

exacerbate inflammation.  The toxicological importance of these findings and their relevance to humans 

are uncertain, and available human data on immune system end points are inadequate to inform these 

questions.  Additional human epidemiological studies, animal studies, and in vitro investigations of 

potential immune system perturbations are needed to confirm the findings of Seo et al. (2008a, 2012) 

and/or to further evaluate functional immune system effects of tetrachloroethylene exposure. 

Chronic-Duration Exposure and Cancer. Kidney toxicity (Bundschuh et al. 1993; Franchini et al. 

1983; Mutti et al. 1992; Price et al. 1995; Vyskocil et al. 1990), liver toxicity (Brodkin et al. 1995; Coler 

and Rossmiller 1953), immunotoxicity (Andrys et al. 1997; Emara et al. 2010), and symptoms of chronic 

encephalopathy (Gregersen 1988) were reported in studies of humans occupationally exposed to 

tetrachloroethylene.  Other occupational exposure studies have not identified kidney (Lauwerys et al. 

1983; Solet and Robins 1991) or irreversible central nervous system effects (Cai et al. 1991; Coler and 

Rossmiller 1953; Lauwerys et al. 1983).  Deficits in behavioral tests that measured short-term memory for 

visual designs (Echeverria et al. 1995) have been noted in humans occupationally exposed to 

tetrachloroethylene.  There are conflicting reports on the effect of tetrachloroethylene on color vision in 

persons occupationally exposed to tetrachloroethylene.  Cavalleri et al. (1994) reported an effect on color 

vision at an average concentration of 7.3 ppm, while Nakatsuka et al. (1992) reported no effect on color 

vision at average concentrations of 15.3 and 10.7 ppm for men and women, respectively. Further 
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evaluation of the Cavalleri et al. (1994) cohort revealed that workers whose exposure to 

tetrachloroethylene had increased demonstrated further decrements in color vision, while those whose 

exposure had decreased had no changes in color vision (Gobba et al. 1998).  Other studies indicate that 

color vision may be impaired in workers or offspring following occupational tetrachloroethylene exposure 

(Sharanjeet-Kaur et al. 2004; Till et al. 2003), but these studies did not quantify exposure levels.  Further 

studies to evaluate the dose-response relationship between exposure to tetrachloroethylene and color 

vision would be useful.  Ferroni et al. (1992) reported increased reaction times in women exposed to 

tetrachloroethylene in dry cleaning shops at an average concentration of 15 ppm for about 10 years. 

A study of neurological function in persons living above or next to dry cleaning facilities has been 

completed (Altmann et al. 1995).  Although no differences in absolute values of neurological function 

tests were noted, effects on neurological function tests were observed when multivariate analysis was 

used to analyze the data. Deficits in visual contrast sensitivity, but not in color discrimination, were 

observed in children or adults living in residential buildings that also housed dry cleaning facilities 

(Schreiber et al. 2002; Storm et al. 2011).  Studies in residential populations suggested effects at lower 

concentrations than studies in occupational populations, but were not considered adequate for MRL 

derivation.  Thus, further studies of larger residential populations exposed to very low levels of 

tetrachloroethylene would be useful. In addition, studies of tetrachloroethylene effects in potentially 

susceptible populations, including minority and low-income populations who may be exposed to multiple 

health stressors in addition to chemical exposure, may serve to inform or refine the MRL. As there are 

few studies of health effects in human populations exposed to tetrachloroethylene orally, additional 

investigation of such populations would serve to fill this data gap. 

Adverse health effects observed in chronic inhalation animal studies include reduced survival in rats and 

mice (NTP 1986), biochemical alterations in the brains of gerbils (Briving et al. 1986; Kyrklund et al. 

1984), and kidney effects (nephropathy) in rats and mice (NTP 1986). Chronic oral animal studies have 

demonstrated reduced survival and kidney effects in rats and mice (NCI 1977).  Doses causing target 

organ effects in animals following oral exposure are very similar to those causing lethality (NCI 1977).  

No chronic dermal studies were located.  Additional chronic studies in animals that provide information 

on threshold levels and dose-response relationships for toxic effects following oral or dermal exposure 

would be useful since populations living near hazardous waste sites are likely to be exposed at low levels 

over a long period of time. 
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Epidemiology studies suggest a possible association between chronic inhalation exposure to 

tetrachloroethylene and cancer (Anttila et al. 1995; Blair et al. 1979, 1990; Boice et al. 1999; Brown and 

Kaplan 1987; Chapman et al. 1981; Chang et al. 2003; Duh and Asal 1984; Katz and Jowett 1981; 

Lipworth et al. 2011; Lynge and Thygesen 1990; Lynge et al. 2006; Ma et al. 2009; Ruder et al. 1994, 

2001; Spirtas et al. 1991). The cancer types most consistently showing an increase were bladder cancer, 

multiple myeloma, and non-Hodgkin’s lymphoma (reviewed by NRC 2010; EPA 2012a). In general, 

studies examining other cancer types are confounded by concomitant exposure to other solvents and lack 

of consideration of the smoking habits and socioeconomic status of the subjects. The only data on 

carcinogenicity in humans following chronic oral exposure to tetrachloroethylene are from communities 

exposed to drinking water contaminated with tetrachloroethylene (Aschengrau et al. 1998, 2003; Cohn et 

al. 1994; Gallagher et al. 2011; Lagakos et al. 1986; Paulu et al. 1999; Viera et al. 2005). There are a 

number of confounding factors (i.e., uncertain exposure duration, exposure to multiple organic 

compounds) that render the studies problematic, and the findings do not substantiate an association 

between tetrachloroethylene and cancer in humans. Nested case-control studies within a cohort exposed 

to tetrachloroethylene in drinking water suggested a potential association between tetrachloroethylene 

exposure and breast cancer (Aschengrau et al. 1998, 2003; Gallagher et al. 2011; Viera et al. 2005), but 

not other types of cancers (Paulu et al. 1999). No chronic dermal exposure data are available for humans. 

Inhalation and oral bioassays using rats and mice have been conducted (JISA 1993; NCI 1977; NTP 

1986).  These data provide sufficient evidence to conclude that tetrachloroethylene is carcinogenic in 

animals.  However, the oral study (NCI 1977) was limited by control groups smaller than treatment 

groups, decreased survival, and dose adjustments during the study.  A dermal study conducted in mice 

reported no incidence of cancer in the test animals (Van Duuren et al. 1979).  No additional cancer 

bioassays in animals appear to be necessary at this time.  However, additional mechanistic data to aid 

interpretation of the mouse liver tumors and rat mononuclear cell leukemias and their relevance to 

humans would be useful. In addition, research investigating the potential contribution of inflammation to 

adverse effects of chronic tetrachloroethylene exposure (including cancers as well as liver, kidney, and 

neurological effects) would be beneficial in light of the data from Seo et al. (2008a) suggesting 

enhancement of inflammation in rats exposed to this compound. 

Genotoxicity. In vivo genotoxicity studies examining human lymphocytes (Ikeda et al. 1980; Seiji et 

al. 1990) or leukocytes (Toraason et al. 2003) from persons occupationally exposed to tetrachloroethylene 

(Ikeda et al. 1980; Seiji et al. 1990) were negative for sister chromatid exchange; however, one study 

reported an increase in transient DNA damage (acentric DNA fragments) that correlated with the TWA 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

     

     

    

     

      

       

  

   

   

 

 

     

   

   

      

   

  

  

 

      

    

 

     

 

  

    

    

  

 

    

   

 

199 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

blood levels of tetrachloroethylene in dry cleaners (Tucker et al. 2011).  The majority of in vivo animal 

assays (Cedaerburg et al. 2010; Murakami and Horikawa 1995; Toraason et al. 1999) and in vitro 

genotoxicity tests using prokaryotic cells (Bartsch et al. 1979; Emmert et al. 2006; Haworth et al. 1983; 

NTP 1986; Shimada et al. 1983; Watanabe et al. 1998), eukaryotic cells (Bronzetti et al. 1983; Callen et 

al. 1980; Koch et al. 1988), or mammalian cells (Costa and Ivanetich 1980; Hartman and Speit 1995; 

Matsushima et al. 1999; Mazzullo et al. 1987; NIOSH 1980; NTP 1986; Shimada et al. 1983; Tu et al. 

1985; Walles 1986) showed negative or marginal results for gene mutation, recombination, DNA damage, 

micronuclei, and sister chromatid exchange.  Although the results in both in vivo and in vitro assays 

generally indicate that tetrachloroethylene is not genotoxic, marginal and equivocal results in some assays 

indicate that genotoxic effects cannot be ruled out.  Data are available indicating that the precursor of the 

N-acetyl cysteine derivative of tetrachloroethylene, S-(1,2,2-trichlorovinyl)glutathione, induces a 

powerful mutagenic effect in S. typhimurium strains in the presence of rat kidney fractions (Vamvakas et 

al. 1989).  It is conceivable, therefore, that the mutagenic potential of the parent compound could be 

uncovered if the steps involved in the activation of tetrachloroethylene via glutathione conjugation could 

be replicated in in vitro microbial systems.  Additional genotoxicity assays would be useful for either 

substantiating the data that indicate that this chemical may be carcinogenic in humans or providing 

information about the carcinogenic mechanism of tetrachloroethylene.  Additional data on genotoxic end 

points from animals exposed in vivo would be useful because the available data are inconclusive. 

Reproductive Toxicity. Reproductive data are available on women occupationally exposed to 

tetrachloroethylene in dry cleaning operations.  Some studies suggest an increase in spontaneous abortion 

(Ahlborg 1990; Bosco et al. 1986; Doyle et al. 1997; Hemminki et al. 1980; Kyyrönen et al. 1989; 

Lindbohm et al. 1990; Windham et al. 1991), but other studies reported no increase (McDonald et al. 

1986, 1987; Olsen et al. 1990).  Limited evidence also suggests that time-to-pregnancy may be increased 

among women occupationally exposed to tetrachloroethylene (Sallmen et al. 1995).  Wives of dry 

cleaners who had significantly more rounded sperm did not have more spontaneous abortions, although 

there was some evidence that it may take slightly longer for these women to become pregnant (Eskenazi 

et al. 1991a, 1991b). Similarly, paternal occupational exposure to tetrachloroethylene was associated 

with decreased fecundability, but not increased rates of spontaneous abortion (Sallmén et al. 1998; 

Taskinen et al. 1989).  These studies suggest that tetrachloroethylene may affect the ability of men to 

reproduce.  Collectively, these occupational studies are limited by inadequate information on exposure 

levels, limited controls for life-style factors, the difficulty in identifying appropriate controls, and the 

problems in controlling for concomitant exposures to other chemicals.  No studies were located regarding 

reproductive effects in humans after oral or dermal exposure to tetrachloroethylene. 
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Evidence from a limited number of well-conducted reproductive studies in laboratory animals, including a 

multigenerational study, suggests that tetrachloroethylene is a potential female reproductive toxicant 

following inhalation exposure.  Exposure to concentrations ≥664 ppm resulted in decreased numbers of 

liveborn pups, increased pre- and postimplantation losses, and increased resorptions (Szakmáry et al. 

1997; Tinston 1995). These exposure levels also resulted in maternal toxicity (e.g., frank neurological 

toxicity, reduced maternal weight gain).  A significant increase in resorptions was also observed in rats 

treated by gavage with tetrachloroethylene during organogenesis at 900 mg/kg/day, a dose that resulted in 

maternal ataxia and decreased body weight gain (Narotsky and Kavlock 1995). These studies suggest that 

reproductive effects following inhalation or oral exposure are unlikely to occur at exposure levels below 

those that result in maternal toxicity.  No studies were located regarding reproductive effects in animals 

following dermal exposure. 

There is also limited evidence that tetrachloroethylene can damage both male and female gametes. 

Spermhead abnormalities were observed in mice, but not rats, 4 and 10 weeks following a 5-day exposure 

to 500 ppm tetrachloroethylene (NIOSH 1980), and decreased oocyte quality was reported in rats exposed 

to 1,700 ppm tetrachloroethylene for 2 weeks (Berger and Homer 2003).  However, histopathological 

effects in the testes and ovaries were not observed in rats or mice exposed by gavage to 

tetrachloroethylene at doses that resulted in increased mortality (NCI 1977).  

There is a need to further assess relationships between exposure to tetrachloroethylene and reproductive 

outcomes among humans following occupational exposure, and studies should be conducted to assess if 

there is a reproductive risk associated with consuming contaminated drinking water.  It would be useful to 

conduct multigeneration or continuous breeding studies for oral and dermal exposures of animals in order 

to clarify the potential for tetrachloroethylene to cause reproductive effects in humans via these exposure 

routes. 

Developmental Toxicity. A human epidemiological study examined birth outcomes associated with 

maternal residence in Endicott, New York, an area where soil was contaminated with VOCs (Forand et al. 

2012).  In a region primarily contaminated with tetrachloroethylene, there was a nonsignificant elevation 

in the relative risk for cardiac defects compared with state-wide incidence (excluding New York City). 

This study is limited by the small number of births in the study area, lack of control for potential 

occupational exposure to tetrachloroethylene, lower socioeconomic status in the study area than the 

general comparison population, and concurrent exposure to other VOCs. 
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A prospective population-based cohort study in Jerusalem suggests parental exposure to tetrachloro-

ethylene may lead to the development of neurological disorders in offspring, as the diagnosis of 

schizophrenia in children of dry cleaners almost tripled compared with the general population (Perrin et 

al. 2007).  Limitations of this study include a small number of diagnosed cases (n=4), lack of exposure 

data, and lack of control for family history of mental illness, an important risk factor for developing 

schizophrenia.  Studies examining the association between drinking water contamination and birth 

outcome (Aschengrau et al. 2008, 2009; Bove et al. 1995; Lagakos et al. 1986; Sonnenfeld et al. 2001) 

have suggested that tetrachloroethylene exposure may be associated with increased ocular and auditory 

defects, central nervous system abnormalities, oral cleft defects, neural tube defects, low birth weight, and 

small-for-gestational age.  Additional negative outcomes in these studies include evidence for impaired 

immunity (Lagakos et al. 1986) and increased risk for mental illness in adulthood (Aschengrau et al. 

2012) following exposure during early life stages.  These studies are not conclusive because the water 

was contaminated with other solvents in addition to tetrachloroethylene.  

Evidence from multiple studies in laboratory animals indicates that gestational exposure to tetrachloro-

ethylene via inhalation affects growth and development, but that tetrachloroethylene is not teratogenic. 

Developmental effects have been reported in rats, mice, and rabbits at concentrations as low as 300 ppm, 

and include growth retardation and skeletal (e.g., delayed ossification) and soft tissue (e.g., kidney 

dysplasia) anomalies (Carney et al. 2006; Schwetz et al. 1975; Szakmáry et al. 1997; Tepe et al. 1980).  

These effects often occur at concentrations that illicit maternal toxicity.  Following oral exposure, 

increased postnatal deaths and increased micro/anophthalmia were observed in the offspring of rats 

treated by gavage with tetrachloroethylene during organogenesis at 900 mg/kg/day, a dose that resulted in 

maternal ataxia and decreased body weight gain (Narotsky and Kavlock 1995). 

There is conflicting evidence regarding the potential for long-term neurobehavioral deficits following 

gestational exposure.  In a combined teratogenic and neurodevelopmental study, female rats were exposed 

to tetrachloroethylene at 0 or 1,000 ppm 2 weeks prior to mating through gestation day 20, prior to mating 

through confirmation of pregnancy only, or gestation days 1–20 only (Manson et al. 1981).  Regardless of 

the treatment paradigm, none of the offspring exhibited alterations in survival, growth, neurobehavior, or 

gross pathologies following observation up to 18 months of age.  In contrast, behavioral and 

neurochemical alterations were observed in rats after maternal exposure to 900 ppm tetrachloroethylene 

(Nelson et al. 1980). Following oral exposure of mice to 5 mg tetrachloroethylene/kg for 7 days 

beginning at 10 days of age, hyperactivity was observed at 60 days of age, but not at 17 days of age 
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(Fredriksson et al. 1993). This study suggests possible permanent damage to the nervous system if 

exposure occurs during development.  No NOAEL was identified.  Because the Fredriksson et al. (1993) 

study serves as the basis for the acute oral MRL, additional animal inhalation and oral studies confirming 

the observation of developmental neurotoxicity would be useful.  Studies in more than one species and 

studies examining whether the effect is a result of tetrachloroethylene or trichloroacetic acid are needed to 

determine if the results in mice are applicable to predicting effects in humans. 

No studies were located regarding developmental effects following dermal exposure to tetrachloro-

ethylene in animals.  Additional animal studies should focus on the mechanism by which tetrachloro-

ethylene produces embryotoxic and neurological effects in the offspring.  Studies examining the 

relationship between behavioral effects and morphological changes in the nervous system following 

tetrachloroethylene exposure would be especially useful.  Because tetrachloroethylene crosses into breast 

milk (Byczkowski and Fisher 1994), and because workers exhale tetrachloroethylene at home, these 

animal studies should also examine the later stages of nervous system development that occur after birth. 

Nervous system function should be examined throughout the lifetime of exposed animals to determine if 

effects are consistently observed as the animals age.  Additional studies regarding developmental effects 

in animals following inhalation, oral, and dermal exposure would provide useful information relevant to 

humans exposed by these routes in areas near hazardous waste sites. 

Immunotoxicity. The available studies of immunological effects in humans exposed to 

tetrachloroethylene provide suggestive evidence for alterations in cytokine signaling related to 

hypersensitivity; however, the data are limited.  Egyptian dry cleaners exposed to <140 ppm tetrachloro-

ethylene demonstrated increased serum and cellular IL-4 levels and serum IgE levels compared to age-

and lifestyle-matched referent subjects (Emara et al. 2010).  In a study examining a wide variety of 

VOCs, Lehmann et al. (2002) reported decreased percentages of IFN-γ-producing T cells in the umbilical 

cord blood of infants from homes with higher levels of tetrachloroethylene (>7.3 μg/m3, the 75th 

percentile concentration) compared with infants from homes with lower levels (Lehmann et al. 2002).  

The limited available epidemiological studies investigating allergic sensitization and asthma have not 

observed a clear role for tetrachloroethylene exposure in the development of these conditions (Delfino et 

al. 2003; Lehmann et al. 2001), but a case report of hypersensitivity pneumonitis in a female dry cleaner 

provides some support (Tanios et al. 2004). 

A very small cohort study reported statistically significant alterations in a number of blood 

immunological parameters when dry cleaning workers with high tetrachloroethylene exposure were 
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compared with measurements from a referent group of “administrators” or when compared with 

laboratory reference values (Andrys et al. 1997).  However, the small number of subjects limits the 

interpretation of these findings. Available data indicate possible immunotoxic effects (altered ratios of 

T lymphocyte subpopulations) in humans chronically exposed to tetrachloroethylene (21 ppb) as well as 

trichloroethylene (267 ppb) and other solvents from a contaminated water supply (Byers et al. 1988).  

However, because of other contaminants, it is not possible to infer from these data the exact role of 

tetrachloroethylene.  

Findings of immunological effects following tetrachloroethylene exposure in animals are inconsistent.  

No evidence of immunotoxicity was reported following inhalation exposure in rats (Boverhof et al. 2012).  

One study (Aranyi et al. 1986) in which mice were exposed by inhalation for 3 hours to varying doses of 

tetrachloroethylene demonstrated increased susceptibility to bacterial infection.  Interpretation of this 

study is complicated by the fact that the controls for one of the treated groups had a higher mortality rate 

than any other group in the study.  Atrophy of the spleen and thymus was reported in rats following 

exposure to 2,000 mg tetrachloroethylene/kg for 5 days (Hanioka et al. 1995).  In a study in which rats 

were exposed to tetrachloroethylene vapors, no production of antibodies to tetrachloroethylene was 

detected (Tsulaya et al. 1977).  In a 14-day study, histopathological changes in the spleen and thymus 

gland were not observed in rats treated by gavage with tetrachloroethylene at a dose that resulted in liver 

effects (Berman et al. 1995).  No effects on natural killer cell, natural cytotoxic, and natural P815 killer 

cell activities or humoral and T cell mitogenesis were observed in cells harvested from rats and mice 

treated with three daily intraperitoneal doses of 829 mg tetrachloroethylene/kg (Schlichting et al. 1992).  

Seo et al. (2008a, 2012) observed enhanced immune response to allergens in rats and mice exposed orally 

to very low doses of tetrachloroethylene; Seo et al. (2008a) also observed exacerbation of inflammation in 

skin lesions, as well as enhanced expression of the pro-inflammatory cytokine IL-4, when rats were 

exposed to tetrachloroethylene for 2 and 4 weeks (respectively).  There are no dermal studies regarding 

the immunotoxic effects of tetrachloroethylene. 

Further study of the immune system effects of tetrachloroethylene is needed, given:  (1) the effects 

suggested by the studies of Seo et al. (2008a, 2012); (2) the observation in human epidemiological studies 

of potential associations between tetrachloroethylene and immune system cancers (multiple myeloma and 

lymphoma); (3) the potential role of enhanced inflammation in the observed effects of tetrachloroethylene 

on other systems including the liver, kidney, and neurological system; and (4) evidence that the related 

compound trichloroethylene exerts immunotoxic effects. A comprehensive immunotoxicity evaluation, 

including a range of functional tests, is warranted.  
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Neurotoxicity. It has been clearly established that the central nervous system is a target of 

tetrachloroethylene toxicity in humans and animals following either inhalation or oral exposure.  Human 

data are available for acute inhalation exposure (Altmann et al. 1990, 1992; Carpenter 1937; Hake and 

Stewart 1977; Morgan 1969; Rowe et al. 1952; Saland 1967; Stewart et al. 1961b, 1970, 1981) and acute 

oral exposure (Haerer and Udelman 1964; Kendrick 1929; Koppel et al. 1985; Sandground 1941; Wright 

et al. 1937) to tetrachloroethylene.  The human studies indicate that the LOAEL for neurological effects 

(increased latency of pattern reversal visual-evoked potentials and deficits for vigilance and eye-hand 

coordination) following inhalation exposure is about 50 ppm for 4-hour exposures (Altmann et al. 1990, 

1992).  Additional nervous system effects including dizziness, headache, sleepiness, and incoordination 

have been observed following 5.5–7-hour exposures at 100–200 ppm in air (Carpenter 1937; Hake and 

Stewart 1977; Morgan 1969; Rowe et al. 1952; Saland 1967; Stewart et al. 1961b, 1970).  Some human 

studies indicate that chronic occupational exposure to tetrachloroethylene can produce more serious 

effects, including memory deficits (Cai et al. 1991; Echeverria et al. 1995; Gregersen 1988; Seeber 1989), 

disorientation (Coler and Rossmiller 1953), and loss of color vision (Cavalleri et al. 1994 Gobba et al. 

1998; Sharanjeet-Kaur et al. 2004; Till et al. 2003). Suggestive evidence for an association with 

Parkinson’s disease (Goldman et al. 2012) and schizophrenia (Perrin et al. 2007) has also been reported in 

small human epidemiological studies. A study of neurological function in persons living above or next to 

dry cleaning facilities has been completed (Altmann et al. 1995).  Although no differences in absolute 

values of neurological function tests were noted, effects on neurological function tests were observed 

when multivariate analysis was used to analyze the data. Deficits in visual contrast sensitivity, but not 

color discrimination, were observed in children or adults living in residential buildings that also housed 

dry cleaning facilities (Schreiber et al. 2002; Storm et al. 2011).  Further studies of larger residential 

populations exposed to very low levels of tetrachloroethylene would be useful to confirm or refute these 

findings.  Effects observed in humans after acute oral exposure appear to parallel those observed after 

inhalation exposure (Haerer and Udelman 1964; Kendrick 1929; Koppel et al. 1985; Sandground 1941; 

Wright et al. 1937).  Chronic exposure to tetrachloroethylene via contaminated drinking water during 

childhood has been associated with increased risk for mental illness and risky behavior later in life 

(Aschengrau et al. 2011) and impaired color vision (Getz et al. 2012); however, exposure did not affect 

the frequency of learning, behavior, or attention (Janulewicz et al. 2008, 2012).  These studies are limited 

by small group sizes.  No dermal data were located for humans. 

Adverse neurological effects in animals exposed to tetrachloroethylene by inhalation include biochemical 

alterations in the brains of rats (Kyrklund et al. 1988; Wang et al. 1993) and gerbils (Briving et al. 1986; 
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Karlsson et al. 1987; Kyrklund et al. 1984; Rosengren et al. 1986), electrophysiological changes in rats 

(Albee et al. 1991; Boyes et al. 2009; Mattsson et al. 1992, 1998), ataxia in rats (Goldberg et al. 1964; 

NTP 1986), hypoactivity in rats (NTP 1986; Tinston 1995), hyperactivity in rats (Savolainen et al. 1977), 

and impaired attention in rats (Oshiro et al. 2008).  Signs of central nervous system depression (Jonker et 

al. 1996), ataxia (Narotsky and Kavlock 1995), increased lacrimation, gait changes, and decreased activity 

(Moser et al. 1995), and impaired operant learning (Warren et al. 1996) have been reported in rats 

following acute oral exposure to tetrachloroethylene.  Oral exposure for 8 weeks resulted in impairments 

in nociception, increased seizure threshold, and reduced locomotor activity in rats (Chen et al. 2002).  No 

animal data were located regarding neurological effects following dermal exposure to tetrachloroethylene.  

Animal studies on the mechanism of tetrachloroethylene neurotoxicity would be useful for mitigating the 

effects observed.  Because studies (Fredriksson et al. 1993; Nelson et al. 1980) suggest that 

tetrachloroethylene is a developmental neurotoxicant, further animal studies would be useful to determine 

if the developing nervous system is indeed the most sensitive target of tetrachloroethylene. 

Epidemiological and Human Dosimetry Studies. The epidemiological data for inhalation 

exposure to tetrachloroethylene derive predominately from exposures in the workplace, where potential 

associations have been reported between tetrachloroethylene exposure and cancer (Anttila et al. 1995; 

Blair et al. 1979, 1990; Boice et al. 1999; Brown and Kaplan 1987; Chang et al. 2003; Chapman et al. 

1981; Duh and Asal 1984; Katz and Jowett 1981; Lipworth et al. 2011; Lynge and Thygesen 1990; Lynge 

et al. 2006; Ruder et al. 1994, 2001), kidney effects (Bundschuh et al. 1993; Franchini et al. 1983; Mutti 

et al. 1992; Price et al. 2005; Vyskocil et al. 1990), liver effects (Brodkin et al. 1995; Coler and 

Rossmiller 1953), cardiovascular effects (Abedin et al. 1980; Hake and Stewart 1977), neurological 

effects (Cavalleri et al. 1994; Echeverria et al. 1995; Ferroni et al. 1992; Gobba et al. 1998; Nakatsuka et 

al. 1992; Sharanjeet-Kaur et al. 2004; Till et al. 2003), immunological effects (Andrys et al. 1997; Emara 

et al. 2010), and reproductive effects (Ahlbor 1990; Bosco et al. 1986; Doyle et al. 1997; Eskenazi et al. 

1991a, 1991b; Hemminki et al. 1980; Kyyronen et al. 1980; Lindbohm et al. 1990; Sallmen et al. 1995, 

1998; Windham et al. 1991).  There are a limited number of epidemiological studies suggesting potential 

associations between living in close proximity to dry cleaning establishments and cancer (Ma et al. 2009) 

and neurological effects (Altmann et al. 1995; Schreiber et al. 2002; Storm et al. 2011).  Most studies do 

not include adequate characterization of exposure levels and associated health effects, and lack control for 

other chemical exposures, socioeconomic status, alcohol consumption, and tobacco consumption. 

Epidemiological data for oral exposure to tetrachloroethylene are available from studies of tetrachloro-

ethylene in the drinking water, where tetrachloroethylene has been associated with breast cancer 

(Aschengrau et al. 1998, 2003; Gallagher et al. 2011; Viera et al. 2005), neurological effects (Aschengrau 
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et al. 2011, 2012; Getz et al. 2012; Perrin et al. 2007), immunological effects (Byers et al. 1998; Lagakos 

et al. 1986), and developmental effects (Aschengrau et al. 2008, 2009; Bove et al. 1995; Forand et al. 

2012; Lagakos et al. 1986; Sonnenfeld et al. 2001.  These studies are limited by a number of confounding 

factors (e.g., uncertain exposure duration, exposure to multiple organic compounds).  There are also 

human studies that measured the concentration of tetrachloroethylene in exhaled air to determine 

exposure concentration (Jang et al. 1993; Monster et al. 1983; Ohtsuki et al. 1983; Solet et al. 1990; 

Stewart et al. 1977, 1981; Storm et al. 2011).  

Additional epidemiological studies are needed that focus on the effects of low levels of tetrachloro-

ethylene in the air, water, or soil near hazardous waste sites. These studies should carefully consider 

possible confounding factors, including exposure to multiple chemicals, smoking and drinking habits, 

age, and gender. The end points that need to be carefully considered are kidney and liver effects, 

cardiovascular effects, developmental effects, neurological effects, immunological effects, and cancer. 

Exposure to tetrachloroethylene may occur in the workplace, near hazardous waste sites, and from certain 

consumer products, including clothes that have been dry cleaned.  Most occupational exposure results 

from inhalation of tetrachloroethylene.  Several epidemiological studies have been conducted that provide 

evidence of relationships between tetrachloroethylene exposure in dry cleaning workers and cancer 

(Anttila et al. 1995; Blair et al. 1979, 1990; Brown and Kaplan 1987; Chapman et al. 1981; Duh and Asal 

1984; Katz and Jowett 1981; Lynge and Thygesen 1990; Ruder et al. 1994), kidney effects (Bundschuh et 

al. 1993; Franchini et al. 1983; Mutti et al. 1992; Vyskocil et al. 1990), liver effects (Brodkin et al. 1995; 

Coler and Rossmiller 1953), and cardiovascular effects (Abedin et al. 1980; Hake and Stewart 1977).  

Limitations of these studies include exposure to other chemicals, lack of control for socioeconomic status, 

alcohol consumption, and tobacco consumption.  There are also human studies that measured the 

concentration of tetrachloroethylene in exhaled air to determine exposure concentration (Jang et al. 1993; 

Monster et al. 1983; Ohtsuki et al. 1983; Solet et al. 1990; Stewart et al. 1977, 1981).  Additional 

epidemiological studies might focus on populations exposed to tetrachloroethylene through contaminated 

drinking water or vapor intrusion in areas surrounding hazardous waste sites in order to determine the 

effects of chronic, low-level exposures.  It would be important for these studies to focus on cancer, 

reproductive effects, developmental effects, kidney effects, liver effects, and neurological effects, and to 

document possible confounding factors including other chemical exposures, smoking habits, and gender. 
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Biomarkers of Exposure and Effect. Exposure to tetrachloroethylene does not produce a unique 

clinical disease state.  However, various central nervous system effects (e.g., dizziness, headache, 

incoordination, and sleepiness) can result from both inhalation and oral exposure to tetrachloroethylene. 

Methods are available that can measure levels of tetrachloroethylene or its metabolites in the blood 

(Antoine et al. 1986; Michael et al. 1980; Ramsey and Flanagan 1982; Ziglio et al. 1984), urine 

(Christensen et al. 1988; Michael et al. 1980; Pekari and Aitio 1985a, 1985b), and exhaled air (Wallace et 

al. 1986a, 1986b).  Measurement of tetrachloroethylene in exhaled air is simple, effective, and 

noninvasive and has been found to be more accurate than measuring metabolites, which are not specific 

for tetrachloroethylene exposure (Krotoszynski et al. 1979; Monster and Smolders 1984; Wallace 1986). 

Additional studies that couple measurement of tetrachloroethylene with tests for determining central 

nervous system effects and other effects (e.g., liver and kidney effects) would be useful to correlate 

exposure with adverse effects of tetrachloroethylene. This correlation would be useful for monitoring 

persons possibly exposed to tetrachloroethylene in areas surrounding hazardous waste sites. 

Absorption, Distribution, Metabolism, and Excretion. The data indicate that inhalation is the 

principal occupational route of exposure for humans, and inhalation and oral exposure from contaminated 

water supplies is a concern for the general public.  Absorption rates suggest that tetrachloroethylene is 

rapidly and readily absorbed following oral exposure (Frantz and Watanabe 1983; Koppel et al. 1985; 

Pegg et al. 1979; Schumann et al. 1980) or inhalation (Hake and Stewart 1977; Monster et al. 1979).  

Tetrachloroethylene vapor is not well absorbed across the skin (McDougal et al. 1990; Riihimaki and 

Pfaffli 1978), but tetrachloroethylene placed directly on the skin can be absorbed (Bogen et al. 1992; 

Jakobson et al. 1982; Kinkead and Lehy 1987; Stewart and Dodd 1964; Tsurata 1975).  Available data 

indicate that during inhalation exposure, uptake is influenced more by lean body mass than by ventilation 

rate and that the absorption rate decreases with increased exposure duration (Monster et al. 1979).  Oral 

studies in animals that examine the stability of tetrachloroethylene to gastrointestinal microbes and rates 

of absorption from various sections of the gastrointestinal tract would be useful. Further quantitative data 

regarding the absorption of tetrachloroethylene following direct skin exposure would be useful because of 

the potential for dermal exposure at a hazardous waste site. 

Several studies are available that describe the distribution of tetrachloroethylene in both humans and 

animals following inhalation exposure (Chen and Blancato 1987; Ghantous et al. 1986; Guberan and 

Fernandez 1974; Marth 1987; Reitz et al. 1996; Savolainen et al. 1977; Stewart et al. 1970).  The 

distribution of tetrachloroethylene has also been studied in rats and dogs following oral exposure (Dallas 
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et al. 1994a, 1995).  Studies using human subjects indicate increases in the body burden with repeated 

daily exposure (Altmann et al. 1990; Guberan and Fernandez 1974; Stewart et al. 1970).  No other studies 

are available that correlate duration of exposure with the distribution kinetics.  Animal data support 

predictions from PBPK models that tetrachloroethylene is primarily distributed to, and accumulated in, 

adipose tissue, the brain, and the liver (Green et al. 1990; Marth 1987; Savolainen et al. 1977; Stewart et 

al. 1970).  Animal studies also indicate that tetrachloroethylene crosses the placenta and is distributed to 

the amniotic fluid and fetus (Ghantous et al. 1986).  A study by Byczkowski and Fisher (1994) indicated 

that tetrachloroethylene does cross into milk in rats exposed to tetrachloroethylene.  Models have been 

developed to estimate the levels of tetrachloroethylene in breast milk of women exposed to 

tetrachloroethylene (Byczkowski and Fisher 1994, 1995; Schreiber 1993). Additional studies that 

determine blood-milk transfer coefficients would be useful for risk assessment.  Distribution data 

following oral and dermal exposure of animals would also be useful, as the potential exists for both oral 

and dermal exposure of humans in the vicinity of hazardous waste sites. 

Human and animal data are available on metabolism following oral exposures (Birner et al. 1996; Buben 

and O'Flaherty 1985; Dallas et al. 1994a; Dekant et al. 1986; Frantz and Watanabe 1983; Green et al. 

1990; Pegg et al. 1979) and inhalation exposures (Birner et al. 1996; Dallas et al. 1994c; Gearhart et al. 

1993; Ikeda et al. 1972; Imbriani et al. 1988; Jang et al. 1993; Monster 1986; Monster et al. 1983; Odum 

et al. 1988; Ogata et al. 1971; Ohtsuki et al. 1983; Pegg et al. 1979; Popp et al. 1992; Reitz et al. 1996; 

Schumann et al. 1980; Seiji et al. 1989; Skender et al. 1991; Yllner 1961), but not following dermal 

exposures.  One human study indicates that the metabolism of tetrachloroethylene is saturable following 

inhalation exposure (Ohtsuki et al. 1983).  A similar saturation pattern has been observed in both mice 

and rats following oral exposure.  Differences in the metabolites of animals and humans have been seen 

for inhalation exposures (Bois et al. 1990; Hattis et al. 1990; Odum et al. 1988) and oral exposures 

(Dallas et al. 1994a, 1995; Dekant et al. 1986).  Further studies investigating possible differences 

according to gender, ethnic population group, or nutritional status, and the effects of enzyme induction on 

the metabolic rate would also be useful.  Research to determine if trichloroethanol is a metabolite of 

tetrachloroethylene, or is produced from trichloroethylene (a contaminant of tetrachloroethylene), would 

also be useful. There are no data available regarding the route of exposure as a factor in the relative rates 

of metabolism. 

There are one oral study (Koppel et al. 1985), one dermal study (Stewart and Dodd 1964), and several 

inhalation studies (Ikeda et al. 1972; Monster et al. 1979; Ogata et al. 1971; Ohtsuki et al. 1983; Opdam 

and Smolders 1986) on excretion of tetrachloroethylene by humans.  The oral data are presumed to be 
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atypical because the patient was hyperventilated to facilitate pulmonary excretion following an accidental 

ingestion of the chemical. These human studies indicate that a large percentage of tetrachloroethylene is 

excreted unchanged in exhaled air (Ohtsuki et al. 1983), with urinary excretion comprising a much 

smaller percentage (approximately 2%) of the estimated absorbed dose (Ogata et al. 1971).  The excretion 

of the urinary metabolites increased linearly with tetrachloroethylene concentrations, but reached a 

plateau when the metabolic capacity was saturated (Ikeda et al. 1972).  Similar saturation excretion 

patterns were seen in rats (Pegg et al. 1979).  As in inhalation exposure, the majority of unmetabolized 

tetrachloroethylene administered orally to humans and animals was eliminated via the lungs, with smaller 

amounts detected in the urine.  The elimination of tetrachloroethylene is well characterized; therefore, 

further studies are not needed at this time. 

Uncertainty in the degree of glutathione-mediated metabolism of tetrachloroethylene in humans, and the 

interindividual variability in this pathway, represents a significant data gap. 

Comparative Toxicokinetics. Data are available on the pharmacokinetics of this chemical for 

different species.  Human data (Hake and Stewart 1977; Monster et al. 1979; Opdam and Smolders 1986; 

Pezzagno et al. 1988; Stewart et al. 1977) and data from rats (Dallas et al. 1994c; Pegg et al. 1979), mice 

(Schumann et al. 1980), and dogs (Dallas et al. 1994a, 1995) regarding absorption of tetrachloroethylene 

following inhalation and oral exposure are similar.  Distribution following inhalation has not been studied 

thoroughly in humans, although pharmacokinetic models have been developed.  These models and animal 

data suggest that tetrachloroethylene accumulates mainly in fat (Green et al. 1990; Guberan and 

Fernandez 1974; Marth 1987; Monster 1986; Savolainen et al. 1977; Stewart et al. 1970).  Both animal 

and human data suggest that the primary target organs are the central nervous system (Rao et al. 1993; 

Savolainen et al. 1977; Stewart et al. 1970, 1981), the liver (Marth 1987), and the kidney (Franchini et al. 

1983; Green et al. 1990; Mutti et al. 1992). 

There are differences in the metabolism of tetrachloroethylene in humans and animals.  Oxalic acid is an 

important metabolite in rats (Pegg et al. 1979), but it has not been reported in humans.  The metabolism 

of tetrachloroethylene is known to be saturable in humans (Ohtsuki et al. 1983) and animals (Pegg et al. 

1979; Schumann et al. 1980).  No human or animal data were located regarding the metabolism of 

tetrachloroethylene following dermal exposure.  In humans, exhalation of unchanged tetrachloroethylene 

following inhalation (Ikeda et al. 1972; Ogata et al. 1971; Ohtsuki et al. 1983), oral (Koppel et al. 1985), 

or dermal (Stewart and Dodd 1964) exposure was the primary route of excretion. Because there are 

differences in the metabolic pattern between humans and rodents, it may be useful to conduct studies 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

   

     

  

   

   

   

 

  

 

       

     

 

  

  

 

  

  

  

    

   

 

   

  

  

  

 

 

 

   

  

     

210 TETRACHLOROETHYLENE 

3. HEALTH EFFECTS 

using additional animal models (e.g., primates) so that a metabolic pattern more closely resembling that of 

humans can be studied. There are also differences in the metabolic patterns of rats and mice (Dekant et 

al. 1986; Green et al. 1990; Odum et al. 1988).  Peroxisome proliferation in the mouse liver has not been 

shown to have a parallel in the rat kidney, suggesting that the mechanisms of carcinogenicity differ in 

these two species (Goldsworthy and Popp 1987; Odum et al. 1988).  The peroxisome proliferation 

response in humans is also minimal (Bentley et al. 1993), and the liver effects observed in mice may not 

occur in humans by the same mechanism.  Additional pharmacokinetic data in different species, 

especially regarding the dynamics of the nervous system distribution of tetrachloroethylene, would be 

useful to improve PBPK analysis. 

Methods for Reducing Toxic Effects. The general recommendations for reducing the absorption 

of tetrachloroethylene following acute inhalation, oral (HSDB 2013; Stutz and Ulin 1992), dermal (HSDB 

2013; Stutz and Ulin 1992), or ocular (Bronstein and Currance 1988; Haddad and Winchester 1990; 

HSDB 2013; Stutz and Ulin 1992) exposure are well established and have a proven efficacy.  No 

additional investigations are considered necessary at this time. 

No clinical treatments other than supportive measures are currently available to enhance elimination of 

tetrachloroethylene following exposure.  Studies designed to assess the potential risks or benefits of 

increasing ventilation to enhance pulmonary elimination or of stimulating enzymatic pathways to increase 

the metabolism of tetrachloroethylene could prove useful.  However, it should be emphasized that once 

exposure has ended, the body does not retain significant amounts of tetrachloroethylene for long periods. 

The development of treatment protocols designed to interfere with the mechanism of tetrachloroethylene-

induced toxic effects would require a sizable research effort.  Since the body does not retain significant 

amounts of tetrachloroethylene for long periods, the relative merits of such an undertaking are not clear.  

Nevertheless, there is substantive evidence from well-conducted studies suggesting possible methods that 

could be exploited to block the mode of action that causes neurotoxicity, nephrotoxicity, and 

hepatotoxicity. 

The mechanism of action of tetrachloroethylene for the central nervous system has not been clearly 

established.  However, there are data indicating that the induced neurotoxicity may be related to solvent 

effects on lipid and fatty acid compositions of membranes (Kyrklund et al. 1984, 1988, 1990).  Effects on 

neurotransmitter systems have also been demonstrated (Korpela and Tahti 1986; Mutti and Franchini 
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1987).  It is reasonable to speculate, therefore, that these effects on neurotransmitters could be mitigated  

by pharmacologic intervention; however, no such interventions are currently available for clinical use.  

The mechanism of action associated with kidney toxicity and nephrocarcinogenicity may involve the  

formation of reactive intermediates from glutathione conjugates (Dekant et al. 1986, 1987; Green et al.  

1990; Henschler 1977).  Although evidence from an in vitro study of human liver tissue suggests that  

glutathione conjugation is not important in human biotransformation of tetrachloroethylene (Green et al.  

1990), the results are not conclusive.  Methods for reducing the destructive damage caused by these  

intermediates or for blocking their formation through inhibition of β-lyase (Dekant et al. 1986, 1987;  

Green et al. 1990) may prove effective in reducing kidney toxicity, but are not currently available for  

clinical use.  

One mechanism of action of liver toxicity suggested in the literature is the induction of peroxisome  

proliferation (and resulting increases in hydrogen peroxide and oxidative damage) by trichloroacetic acid,  

a metabolite of tetrachloroethylene (Odum et al. 1988).  Shifting metabolism away from formation of  

trichloroacetic acid could theoretically reduce toxicity that might be caused via this mechanism.  

However, the net effect on all forms of toxicity of tetrachloroethylene by such an alteration in metabolism  

would need to be carefully evaluated.  

Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and  

developmental effects expressed either prenatally or during childhood, are discussed in detail in the  

Developmental Toxicity subsection above.  

Additional human and animal studies are needed to assess whether infants and children are more  

susceptible than adults to tetrachloroethylene toxicity.  

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs:  

Exposures of Children.  

3.12.3 Ongoing Studies 

Ongoing studies funded by the National Institutes of Health (NIH) and pertaining to tetrachloroethylene 

are shown in Table 3-9. 
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Table 3-9.  Ongoing Studies on Tetrachloroethylene 

Principal 
Investigator Study topic Institution Sponsor 
Aschengrau, AA Tetrachloroethylene in the Boston University National Institute of 

drinking water and risk of birth Medical Campus, Environmental Health 
defects in a population-based Boston, Massachusetts Sciences 
case-control study 

Ozonoff, DM Epidemiologic studies of Boston University National Institute of 
neurodevelopment in a Medical Campus, Environmental Health 
population exposed to Boston, Massachusetts Sciences 
tetrachloroethylene in the 
drinking water 

DeRoos, AJ Risk of multiple myeloma from Drexel University, National Institute of 
exposure to occupational Philadelphia, Environmental Health 
solvents, including Pennsylvania Sciences 
tetrachloroethylene 

Source: RePORTER 2013 
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4. CHEMICAL AND PHYSICAL INFORMATION 

4.1  CHEMICAL IDENTITY 

The chemical identity of tetrachloroethylene is shown in Table 4-1. 

4.2  PHYSICAL AND CHEMICAL PROPERTIES 

The physical and chemical properties of tetrachloroethylene are shown in Table 4-2. 
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Table 4-1. Chemical Identity of Tetrachloroethylene 

Characteristic Information Reference 
Chemical name 
Synonym(s) 

Registered trade name(s) 

Tetrachloroethylene 
Ethylene tetrachloride; per; PERC; perchlor; 
perchloroethylene; perk; 1,1,2,2-tetrachloroethylene; 
tetrachloroethene; tetrachloroethylene; PCE 
Ankilostin; Antisal 1; Dee-Solve; Didakene; Dow-per; 
ENT 1860; Fedal-Un; Nema; Perclene; Percosolv; 
Perklone; PerSec; Tetlen; Tetracap; Tetraleno; 
Tetravec; Tetroguer; Tetropil; Perawin; Tetralex; 
Dowclene EC 

HSDB 2013 
HSDB 2013; 
NIOSH 2013 

OHM/TADS 1990 

Chemical formula C2Cl4 HSDB 2013 
Chemical structure Cl Cl HSDB 2013 

C C  
Cl Cl 

Identification numbers: 
 CAS registry 
 NIOSH RTECS 

127-18-4 
kx3850000 

HSDB 2013
HSDB 2013 

EPA hazardous waste U210 HSDB 2013
 OHM/TADS 
 DOT/UN/NA/IMDG shipping 

HSDB 

7216847 
UN1897; IMO 6.1 
49 403 55 

OHM/TADS 1990
HSDB 2013
HSDB 2013

 NCI NCI-C04580 HSDB 2013 

CAS = Chemical Abstracts Service; DOT/UN/NA/IMDG = Department of Transportation/United Nations/North 
America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for 
Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; 
RTECS = Registry of Toxic Effects of Chemical Substances 
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Table 4-2.  Physical and Chemical Properties of Tetrachloroethylene 

Property Information Reference 
Molecular weight 165.83 Lide 2008 
Color Colorless HSDB 2013 
Physical state Liquid (at room temperature) HSDB 2013 
Melting point -22.3°C Lide 2008 
Boiling point 121.3°C Lide 2008 
Density at 20 °C 1.6230 g/mL Lide 2008 
Odor Ethereal HSDB 2013 
Odor threshold: 

Water 0.3 ppm EPA 1987b 
Air 1.0 ppm EPA 1987b 

Solubility: 
Water at 25 °C 206 mg/L HSDB 2013 

Organic solvents Miscible with alcohol, ether, HSDB 2013 
chloroform, benzene, solvent hexane, 
and most of the fixed and volatile oils 

Partition coefficients: 
Log Kow 3.40 HSDB 2013 
Log Koc 2.2–2.54 Friesel et al. 1984; Seip et 

al. 1986; 
Vapor pressure at 20 °C 18.5 mmHg HSDB 2013 
Henry's law constant at 25 °C 1.8x10-2 atm-m3/mol Gossett 1987 
Autoignition temperature No data 
Flashpoint None HSDB 2013 
Flammability limits Nonflammable HSDB 2013 
Conversion factors 1 mg/L = 147.4 ppm; 

1 ppm = 6.78 mg/m3 
HSDB 2013 

Explosive limits No data 
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5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.1  PRODUCTION 

Tetrachloroethylene is a commercially important chlorinated hydrocarbon solvent and chemical 

intermediate.  It is used as a dry cleaning and textile-processing solvent and for vapor degreasing in 

metal-cleaning operations. Tetrachloroethylene was first commercially produced in the United States in 

1925 via a four-step process using acetylene and chlorine as raw materials (IARC 1979).  By 1975, only 

one U.S. plant was using this process because of the high cost of acetylene. 

Currently, the majority of tetrachloroethylene produced in the United States is made by one of three 

processes: direct chlorination of certain hydrocarbons, chlorination of ethylene dichloride, and 

oxychlorination.  The first process involves the reaction of chlorine with a hydrocarbon such as methane, 

ethane, propane, or propylene at high temperatures, with or without a catalyst.  A chlorinated derivative of 

a hydrocarbon may also be used. The reaction forms a crude product, which can be purified to yield a 

marketable grade of tetrachloroethylene. This is easier and more economical than the acetylene process. 

In addition, the hydrocarbon wastes from other processes can subsequently be used as feedstocks for this 

process.  However, large quantities of hydrogen chloride can be produced. The second process, 

chlorination of ethylene dichloride, involves noncatalytic chlorination of ethylene dichloride or other C2 

chlorinated hydrocarbons.  The third process, oxychlorination of ethylene via ethylene dichloride, is 

widely used to coproduce trichloroethylene and tetrachloroethylene without any net production of 

hydrogen chloride (Chemical Products Synopsis 1985; Keil 1985; Hickman 2000). 

In 1993, the manufacture of tetrachloroethylene via reaction of a hydrocarbon having three or less carbon 

atoms with a partially chlorinated hydrocarbon, chlorine gas, and carbon tetrachloride at 500–700°C was 

proposed in a patent.  The introduction of carbon tetrachloride to the reaction in a closed system (as 

opposed to it being formed in the reaction) was to monitor and prevent carbon tetrachloride production in 

the manufacturing of tetrachloroethylene (Hoshino et al. 1993). 

Tetrachloroethylene is produced in the following grades: purified, technical, U.S. Pharmacopoeial (USP), 

spectrophotometric, and dry cleaning (ACGIH 1991).  The dry cleaning and technical grades meet 

specifications for technical grade, differing only in the amount of stabilizer added to prevent 

decomposition.  Stabilizers, which include amines or mixtures of epoxides and esters, are added to 

prevent decomposition. Tetrachloroethylene, which is thus stabilized and not easily hydrolyzed, is 

transported in tanks and drums (ACGIH 1991). 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

 

   

    

   

  

     

   

 

    

 

   

    

     

 

  

    

     

    

  

 

   
 

  

  

 

 

 

  
 

  

 

    

218 TETRACHLOROETHYLENE 
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Historical U.S. production volumes of tetrachloroethylene have been reported as follows (C&EN 1994): 

547 million pounds in 1983 and 271 million pounds in 1993, respectively.  These data show that there 

was an overall decline of about 50% between 1983 and 1993.  According to the U.S. EPA Inventory 

Update Reporting for 2006, the total U.S. production volume of tetrachloroethylene was between 

500 million and < 1 billion pounds (EPA 2013f).  The overall demand for tetrachloroethylene was 

expected to grow at a rate of approximately 1.5% per year from 2007 to 2011(CMR 2008), but data show 

that the total annual capacity has decreased.  In 2011, the directory of chemical producers in the United 

States listed three major manufacturers with a total annual capacity of 458 million pounds (SRI 2011). 

Some of the facilities that manufactured or processed tetrachloroethylene in 2011 are listed in Table 5-1 

(TRI11 2013). Toxics Release Inventory (TRI) data should be used with caution since only certain types 

of industrial facilities are required to report.  This is not an exhaustive list. 

Tetrachloroethylene was reported to be produced naturally by several temperate and subtropical marine 

macroalgae at the rate of 0.0026–8.2 ng/g fresh weight/hour. These species of algae have also been 

reported to produce trichloroethylene, usually at greater rates. It should be noted, however, that there are 

results that show that tetrachloroethylene was not detected in cultures of the same algae when the methods 

of Abrahamsson et al. (1995) were done in the laboratory (Murphy et al. 2000).  

5.2  IMPORT/EXPORT 

In 1990, about 75.0 million pounds of tetrachloroethylene were imported into the United States, and in 

2012, about 26.5 million pounds were imported in the United States (USITC 2013).  Exports from the 

United States were about 55.1 million pounds in 1990 and about 83.8 million pounds in 2012 (USITC 

2013).  

5.3  USE 

Tetrachloroethylene is commercially important as a chlorinated hydrocarbon solvent and as a chemical 

intermediate.  An estimate of the current end-use pattern for tetrachloroethylene is as follows: 60% for 

chemical intermediate, 18% for dry cleaning and textile processing, 18% for surface preparation and 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

 

 
 

 
 

 

 

     
      
     
       
     
     
     
     
      

     
     
      
      
        
      
          
      

      
     
      
     
     
     
     
     
      
     
      
      
     
     
        

     
     
      
          
     
     

     

219 TETRACHLOROETHYLENE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1.  Facilities that Produce, Process, or Use Tetrachloroethylene 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AL 3 1,000 99,999 2, 3, 12 
AR 5 1,000 999,999 9, 10, 11, 12 
CA 21 0 99,999,999 1, 3, 4, 6, 7, 9, 10, 11, 12 
CO 2 10,000 99,999 12, 14 
CT 1 10,000 99,999 9 
DE 1 10,000 99,999 10 
FL 1 10,000 99,999 11 
GA 9 1,000 999,999 7, 9, 12, 14 
HI 1 1,000 9,999 10 
IA 1 100,000 999,999 7, 9 
IL 10 100 999,999 7, 9, 10, 11, 12 
IN 11 100 9,999,999 1, 2, 7, 9, 10, 12, 13, 14 
KS 12 0 999,999 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14 
KY 4 10,000 999,999 1, 3, 6, 9, 12 
LA 22 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 
MA 5 1,000 99,999 2, 3, 9, 11, 12 
MI 4 100 999,999 1, 5, 7, 10, 12 
MN 4 10,000 999,999 6, 10, 11, 12 
MO 7 100 99,999 7, 9, 11, 12 
MS 2 10,000 999,999 7, 10 
MT 3 0 99,999 10, 12 
NC 2 100,000 999,999 7, 9 
ND 1 1,000 9,999 10 
NE 2 10,000 99,999 7, 12 
NJ 2 10,000 99,999 2, 3, 8, 9, 10, 12 
NM 1 10,000 99,999 10 
NY 7 100 999,999 2, 4, 9, 10, 12, 14 
OH 15 100 9,999,999 2, 3, 7, 9, 11, 12, 14 
OK 5 1,000 99,999 6, 10, 11, 12 
OR 2 1,000 99,999 10, 12 
PA 12 1,000 9,999,999 2, 3, 7, 8, 9, 10, 11, 12 
RI 1 100,000 999,999 7, 9 
SC 2 10,000 99,999 11, 12 
TN 2 100 99,999 2, 3, 6, 9, 10, 12 
TX 45 0 499,999,999 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14 
UT 3 10,000 999,999 10, 12 
VA 1 10,000 99,999 12 
VI 1 100,000 999,999 10 
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5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1.  Facilities that Produce, Process, or Use Tetrachloroethylene 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

WA 6 100 999,999 2, 4, 7, 9, 10, 11, 14  
WI 6 10,000 99,999 7, 9, 11, 12  
WY 1 100 999 10  

aPost office state abbreviations used.  
bAmounts on site reported by facilities in each state.  
cActivities/Uses:  
1.  Produce 6.  Reactant 11.  Manufacturing Aid 
2.  Import 7.  Formulation Component 12.  Ancillary/Other Uses 
3.  Onsite use/processing 8.  Article Component 13.  Manufacturing Impurity 
4.  Sale/Distribution 9.  Repackaging 14.  Process Impurity 
5.  Byproduct 10.  Chemical Processing Aid 

Source:  TRI11 2013 (Data are from 2011) 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

    
 
 

 
 
 
 

  

 

    

  

 

  

   

    

  

   

    

   

    

  

    

 

 

   

 

   

   

   

   

 

   
 

 

  

   

    

  

  

    

 

221 TETRACHLOROETHYLENE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

cleaning, 2% for oil refining catalyst regeneration, and 2% for miscellaneous use (Dow 2008).  Beginning 

in 2020, federal regulations are scheduled to begin eliminating the use of tetrachloroethylene in dry 

cleaning in urban locations (CMR 2008). 

In textile processing, tetrachloroethylene is used as a scouring solvent that removes oils from fabrics after 

knitting and weaving operations, as a carrier solvent for sizing and desizing, and for fabric finishes and 

water repellents. Tetrachloroethylene is able to dissolve fats, greases, waxes, and oils without harming 

natural or human-made fibers.  However, because of the growing popularity of wash-and-wear fabrics, 

improved efficiency of dry cleaning equipment, and increased chemical recycling, the demand for 

tetrachloroethylene as a dry cleaning solvent has steadily declined (EPA 1995). There are three types of 

tetrachloroethylene dry cleaners as regulated by the EPA’s Clean Air Act: large industrial and 

commercial dry cleaners; freestanding small dry cleaners; and small dry cleaners in apartment buildings. 

The EPA has required operators to reduce emissions from dry cleaners and has enforced a final rule on 

the phase out of tetrachloroethlyene use in dry cleaners that are in residential areas by December 21, 2020 

(EPA 2006).  Currently, approximately 28,000 U.S. dry cleaners use tetrachloroethylene (EPA 2013g). 

Another major use of tetrachloroethylene is as a vapor and liquid degreasing agent.  Since 

tetrachloroethylene dissolves many organic compounds, select inorganic compounds, and high-melting 

pitches and waxes, it can be used to clean and dry contaminated metal parts and other fabricated 

materials.  It is also used to remove soot from industrial boilers (Verschueren 1983).  Tetrachloroethylene 

was used as an anthelmintic in the treatment of hookworm and some nematode infestations, but it has 

been replaced by drugs that are less toxic and easier to administer (Budavari 1989; HSDB 2013). 

5.4  DISPOSAL 

The chemical industry has responded to increased environmental and ecological concerns with efforts to 

improve recovery and recycling of tetrachloroethylene.  One method of disposal involves absorption in 

vermiculite, dry sand, earth, or a similar material and then burial in a secured sanitary landfill (HSDB 

2013).  A second method involves incineration after mixing with another combustible fuel.  With the 

latter method, combustion must be complete to prevent the formation of phosgene, and an acid scrubber 

must be used to remove the haloacids produced.  The gas-fired type of incinerator is optimal for the total 

destruction of tetrachloroethylene (HSDB 2013). 
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Tetrachloroethylene is also a potential candidate for fluidized bed incineration at 450–980°C, rotary kiln 

incineration at 820–1,600°C, and liquid injection incineration at 650–1,600°C (HSDB 2013). 

Federal regulations prohibit land disposal of various chlorinated solvent materials that may contain 

tetrachloroethylene.  Any solid waste containing tetrachloroethylene must be listed as a hazardous waste 

unless the waste is shown not to endanger the health of humans or the environment (EPA 1985b, 1988).  

Destruction and removal efficiency of tetrachloroethylene that is designated as a principal organic 

hazardous constituent must be 99.99%.  Discharge of tetrachloroethylene into U.S. waters requires a 

permit (WHO 1987).  Before implementing land disposal of waste residue, environmental regulatory 

agencies should be consulted for guidance on acceptable disposal practices (HSDB 2013). 
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6.1  OVERVIEW 

Tetrachloroethylene has been identified in at least 945 of the 1,699 hazardous waste sites that have been 

proposed for inclusion on the EPA National Priorities List (NPL) (HazDat 2007).  However, the number 

of sites evaluated for tetrachloroethylene is not known.  The frequency of these sites can be seen in 

Figure 6-1. Of these sites, 943 are located within the United States and 2 are located in the 

Commonwealth of Puerto Rico (not shown). 

Tetrachloroethylene is a VOC that is widely distributed in the environment.  It is released to the 

environment via industrial emissions and from building and consumer products. Releases are primarily to 

the atmosphere.  However, the compound is also released to surface water and land in sewage sludges and 

in other liquid and solid waste, where its high vapor pressure and Henry's law constant usually result in its 

rapid volatilization to the atmosphere.  Tetrachloroethylene has relatively low solubility in water and has 

medium-to-high mobility in soil; thus, its residence time in surface environments is not expected to be 

more than a few days.  However, it persists in the atmosphere for several months and can last for decades 

in the groundwater.  

Tetrachloroethylene is a common dense nonaqeuous phase liquid (DNAPL) that can migrate through the 

subsurface of water (ITRC 2003).  As a result, tetrachloroethylene can also be persistent in the water 

because it has a higher density than water and relatively low water solubility.  Vapor-phase 

tetrachloroethylene can also seep into the air of homes and commercial buildings from subsurface 

groundwater and soils through a process called vapor intrusion. Soil vapor, or the air found between soil 

particles, can become contaminated and migrate up through the soil to the buildings through cracks or 

perforations in the foundation of the building and in some cases, basement floors or walls. This migration 

occurs because of pressure differences inside and below the building (NYSDH 2006) and diffusion (EPA 

2012m). Because of its pervasiveness and ability to persist under certain conditions, the potential for 

human exposure may be substantial. 

6.2  RELEASES TO THE ENVIRONMENT 

The Toxics Release Inventory (TRI) is an annual compilation of information on the release of toxic 

chemicals by manufacturing and processing facilities. TRI data should be used with caution because only 

certain types of facilities are required to report (EPA 2005).  This is not an exhaustive list.  Manufacturing 
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Figure 6-1.  Frequency of NPL Sites with Tetrachloroethylene Contamination 
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and processing facilities are required to report information to the TRI only if they employ 10 or more full-

time employees; if their facility is included in Standard Industrial Classification (SIC) Codes 10 (except 

1011, 1081, and 1094), 12 (except 1241), 20–39, 4911 (limited to facilities that combust coal and/or oil 

for the purpose of generating electricity for distribution in commerce), 4931 (limited to facilities that 

combust coal and/or oil for the purpose of generating electricity for distribution in commerce), 4939 

(limited to facilities that combust coal and/or oil for the purpose of generating electricity for distribution 

in commerce), 4953 (limited to facilities regulated under RCRA Subtitle C, 42 U.S.C. section 6921 et 

seq.), 5169, 5171, and 7389 (limited S.C. section 6921 et seq.), 5169, 5171, and 7389 (limited to facilities 

primarily engaged in solvents recovery services on a contract or fee basis); and if their facility produces, 

imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds of a TRI 

chemical in a calendar year (EPA 2005). 

6.2.1 Air 

Estimated releases of 708,893 pounds (~321 metric tons) of tetrachloroethylene to the atmosphere from 

245 domestic manufacturing and processing facilities in 2011, accounted for about 62% of the estimated 

total environmental releases from facilities required to report to the TRI (TRI11 2013). These releases are 

summarized in Table 6-1. 

Likewise, EPA’s National Emission Inventory (NEI) database contains data regarding sources that emit 

criteria air pollutants and their precursors, and hazardous air pollutants (HAPs) for the 50 United States, 

Washington DC, Puerto Rico, and the U.S. Virgin Islands (prior to 1999, criteria pollutant emission 

estimates were maintained in the National Emission Trends [NET] database and HAP emission estimates 

were maintained in the National Toxics Inventory [NTI] database). The NEI database derives emission 

data from multiple sources, including state and local environmental agencies; the TRI database; computer 

models for on- and off-road emissions; and databases related to EPA's Maximum Achievable Control 

Technology (MACT) programs to reduce emissions of HAPs.  Data downloaded from the 2008 NEI 

indicated that the total emission of tetrachloroethylene was approximately 5,361 tons, with the biggest 

source arising from its use as a dry cleaning solvent (EPA 2013b).  These data are summarized in 

Table 6-2.  

Environmental releases of tetrachloroethylene also occur at sites of its manufacture and at sites of 

production of other chlorohydrocarbons (such as ethylene dichloride and methylene chloride) in which 

tetrachloroethylene is formed as a byproduct (Weant and McCormick 1984).  Tetrachloroethylene 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

  
 
 

 
 
 
 

  

 

  
 

 
   

       
 

    
          
          
          
          
          
          
          
          

          
          
          
          
          
          
          
          

          
          
          
          
          
          
          
          
          
          
          
          
          
          
          

          
          
          
          
          

226 TETRACHLOROETHYLENE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or  
Use Tetrachloroethylenea  

Reported amounts released in pounds per yearb 

Total release 
Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek On- and off-site 
AL 3 6,567 0 0 0 0 6,567 0 6,567 
AR 5 22,486 0 0 0 92,138 22,486 92,138 114,624 
CA 21 87,103 1 0 1,835 0 88,938 1 88,939 
CO 2 0 0 0 0 800 0 800 800 
CT 1 22 0 0 0 0 22 0 22 
DE 1 10 0 0 0 0 10 0 10 
FL 1 20,583 0 0 1,100 0 20,583 1,100 21,683 
GA 9 14,526 0 0 3 6,977 14,526 6,980 21,506 
HI 1 0 0 0 0 0 0 0 0 
IA 1 0 0 0 0 0 0 0 0 
IL 10 15,415 5 0 14 0 15,425 9 15,434 
IN 11 27,900 0 0 0 0 27,900 0 27,900 
KS 12 163,419 0 3,559 2,152 0 166,978 2,152 169,130 
KY 4 6,887 0 0 36,162 0 6,887 36,162 43,049 
LA 22 110,505 148 0 153 0 110,653 153 110,806 
MA 5 14,122 0 0 0 0 14,122 0 14,122 
MI 3 11,216 24 0 22,638 0 33,569 309 33,878 
MN 4 2,504 9 0 10 0 2,513 10 2,523 
MO 7 27,753 0 0 0 0 27,753 0 27,753 
MS 2 1,358 0 0 0 0 1,358 0 1,358 
MT 3 1,554 0 0 25 0 1,578 1 1,578 
NC 2 3,858 0 0 0 45,328 3,858 45,328 49,186 
ND 1 490 0 0 0 0 490 0 490 
NE 2 11,642 0 0 0 0 11,642 0 11,642 
NJ 2 173 0 0 0 64 173 64 237 
NM 1 18 0 0 0 0 18 0 18 
NY 7 19,756 38 0 0 17,165 19,794 17,165 36,959 
OH 15 14,203 5 35,879 1,888 7,245 50,087 9,133 59,220 
OK 5 6,000 0 0 5 1,050 6,005 1,050 7,055 
OR 2 11,404 0 0 85,349 0 96,726 27 96,753 
PA 12 26,973 7 0 505 30,943 26,980 31,448 58,428 
RI 1 551 0 0 0 0 551 0 551 
SC 2 1,942 0 0 15 550 1,942 565 2,507 
TN 2 822 0 0 0 0 822 0 822 
TX 45 67,309 79 43,485 590 499 110,903 1,059 111,962 
UT 3 200 5 0 0 0 205 0 205 
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or  
Use Tetrachloroethylenea  

Reported amounts released in pounds per yearb 

Total release 
Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek On- and off-site 
VA 1 3,491 0 0 0 0 3,491 0 3,491 
VI 1 153 0 0 0 0 153 0 153 
WA 6 656 1 0 1 385 658 385 1,043 
WI 6 5,317 0 0 0 0 5,317 0 5,317 
WY 1 5 0 0 0 0 5 0 5 
Total 245 708,893 323 82,923 152,444 203,144 901,688 246,039 1,147,726 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an  
exhaustive list.  Data are rounded to nearest whole number.  
bData in TRI are maximum amounts released by each facility.  
cPost office state abbreviations are used.  
dNumber of reporting facilities.  
eThe sum of fugitive and point source releases are included in releases to air by a given facility.  
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal  
and metal compounds).  
gClass I wells, Class II-V wells, and underground injection. 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface  
impoundments, other land disposal, other landfills. 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for  
disposal, unknown 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 
kTotal amount of chemical transferred off-site, including to POTWs.  

RF = reporting facilities; UI = underground injection 

Source:  TRI11 2013 (Data are from 2011) 
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Table 6-2.  Emissions of Tetrachloroethylene 

Emission sector Emissions (pounds) 
Bulk gasoline terminals 3,394.73 
Commercial cooking 0 
Dust; construction dust 56.05 
Fuel comb; commercial /institutional, biomass 1,132.58 
Fuel comb; commercial /institutional, coal 36.20 
Fuel comb; commercial /institutional, natural gas 10,681.70 
Fuel comb; commercial /institutional, oil 301.86 
Fuel comb; commercial /institutional, other 599.15 
Fuel comb; electric generation, biomass 2,691.08 
Fuel comb; electric generation, coal 41,672.06 
Fuel comb; electric generation, natural gas 545.02 
Fuel comb; electric generation, oil 71.07 
Fuel comb; electric generation, other 2,646.36 
Fuel comb; industrial boilers, ICEs, biomass 15,337.23 
Fuel comb; industrial boilers, ICEs, coal 1,386.21 
Fuel comb; industrial boilers, ICEs, natural gas 2,377.53 
Fuel comb; industrial boilers, ICEs, oil 16,159.03 
Fuel comb; industrial boilers, ICEs, other 827.79 
Fuel comb; residential, natural gas 0 
Fuel comb; residential, oil 0 
Fuel comb; residential, other 12.26 
Gas stations 49.97 
Industrial processes; cement manufacturing 46.34 
Industrial processes; chemical manufacturing 70,789.19 
Industrial processes; ferrous metals 5.60 
Industrial processes; mining 0.54 
Industrial processes; NEC 144,943.85 
Industrial processes; non-ferrous metals 87,002.84 
Industrial processes; oil and gas production 1,140.31 
Industrial processes; petroleum refineries 24,768.85 
Industrial processes; pulp and paper 126,152.51 
Industrial processes; storage and transfer 80,568.03 
Miscellaneous non-industrial NEC 0 
Mobile; non-road equipment, diesel 1,100.80 
Solvent; consumer and commercial solvent use 911,059.81 
Solvent; degreasing 1,236,680.40 
Solvent; dry cleaning 7,471,498.64 
Solvent; graphic arts 4,792.01 
Solvent; industrial surface coating and solvent use 820,254.87 
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Table 6-2.  Emissions of Tetrachloroethylene 

Emission sector Emissions (pounds) 
Solvent; non-industrial surface coating 162,519.17 
Waste disposal 477,429.76 

ICE = internal combustion engine; NEC = not elsewhere classified 

Source:  EPA (2013b). 
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emissions to the atmosphere may occur at sites used in disposing the chemical (EPA 2013b, TRI11 2013), 

including incineration facilities for municipal and hazardous waste (Oppelt 1987).  Tetrachloroethylene is 

also speculated to be released to the atmosphere from the ocean where it is produced by some macroalgae 

(Abrahamsson et al. 1995). 

Tetrachloroethylene partitions primarily to the atomosphere when released into the environment 

(NICNAS 2001).  The highest levels of tetrachloroethylene emissions from the dry cleaning industry are 

from uncontrolled, or fugitive, emissions (OSHA 2005).  In addition, due to its volatility, 

tetrachloroethylene lost from contaminated soil can escape to the atmosphere (LHWMP 2013). 

Vapor-phase tetrachloroethylene can migrate into the air of homes and buildings from below a 

contaminated site.  For example, through the process known as vapor intrusion, tetrachloroethylene was 

found to leach into the soil to the aquifer from improper storage of the chemical in a Colorado building.  

The vapors from contaminated groundwater and/or soils were found to migrate through the vadose zone, 

and then into homes and buildings (Agency for Toxic Substances and Disease Registry 2006). 

The concept of vapor intrusion was introduced in the late 1990’s.  It was previously thought that 

contaminated water was a threat only when the groundwater was used as drinking water.  In 1979, 

4,100 gallons of 1,1,1-trichloroethlyene were spilled in the Village of Endicott, New York. 

Tetrachloroethylene was one of the many chemicals found in the groundwater analysis after the spill; 

however, the compound was not present because of the spill, but rather from previous spills amd releases. 

In 2000–2001, it was discovered that residents in the Village of Endicott, New York, were exposed to 0.1– 

24 µg/m3 of tetrachloroethylene in the indoor air.  The reference limit for tetrachloroethylene is 2.2 µg/m3 

(Forand et al. 2012).  McDonald and Wertz (2007) proposed that such high concentrations of 

tetrachloroethylene were primarily due to background sources of tetrachloroethylene rather than vapor 

intrusion processes. 

Tetrachloroethylene has been detected in several other sites as indicated in the Environmental Protection 

Agency’s Vapor Intrusion Database (EPA 2012l).  In Texas, the indoor air in homes of communities that 

sit above groundwater contaminated with tetrachloroethylene were analyzed.  It was found that 

concentrations of tetrachloroethylene increased with the magnitude of the barometric pressure drop, 

humidity, and groundwater concentrations due to vapor intrusion.  Concentrations of tetrachloroethylene 

decreased when wind speed increased, during winter, and in homes without air conditioners (Johnston and 

Gibson 2013). 
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Similarily, spatial locations and temporal changes are important factors when assessing sites 

contaminated with tetrachloroethylene.  Spatial and temporal variability can lead to variations in the 

vapor intrusion process.  In other words, it may be difficult to assess the impact of tetrachloroethylene 

above ground because factors such as the season of year, time of month, space between homes, etc. may 

alter the concentrations below ground.  In some cases, the presence of contamination below ground does 

not always lead to contaminated vapors above ground (Folkes et al. 2009). 

Alternatively, Pennell et al. (2013) found that there were higher levels of tetrachloroethylene on the first 

floor of homes, with lower levels of tetrachloroethylene in the basement of homes at a research site in 

Boston. These higher levels on the first floor were accompanied by sewer gas smells. The authors 

reported that tetrachloroethylene can be present in sewer gas from bathroom plumbing that, in turn, can 

contaminate indoor air as well. 

6.2.2 Water 

Estimated releases of 323 pounds of tetrachloroethylene to surface water from 245 domestic 

manufacturing and processing facilities in 2011, accounted for about 0.03% of the estimated total 

environmental releases from facilities required to report to the TRI (TRI11 2013).  These releases are 

summarized in Table 6-1. 

A variety of industries that use tetrachloroethylene (such as metal degreasing and dry cleaning) generate 

aqueous wastes containing the compound, which subsequently end up at waste treatment facilities (Weant 

and McCormick 1984).  Aeration processes at waste treatment facilities strip much of the tetrachloro-

ethylene from the water and release it into the atmosphere as a result of the high volatility of this chemical 

(Lurker et al. 1982). Exchange rates of tetrachloroethylene from water to air were measured by means of 

the Reynolds number.  Tetrachloroethylene had exchange rates of 3.13–82.0 as a function of the VOCs in 

the water and oxygen in the atmosphere (DeWulf et al. 1998). 

Tetrachloroethylene has also been detected in groundwater due to inappropriate disposal and release from 

dry cleaning facilities or landfills in Canada and the United States. Tetrachloroethylene has been detected 

in most drinking water, groundwater, surface water and rainwater supplies.  Tap water may be an 

important source of exposure to tetrachloroethylene when levels of the compound are >10 ppb in the 

water supply (CEPA 2001).  Three percent of the water supply systems that use well water contain 
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≥0.5 µg/L tetrachloroethylene (WHO 2003).  One of the primary causes of contamination was found to be 

due to solvent degreasing activities. Tetrachloroethylene volatilizes readily into the atmosphere due to 

the high volatility of the compound; however, it can also persist in the groundwater for decades (CDPHE 

2002).  Concentrations of tetrachloroethylene in the groundwater are not expected to be at levels that 

heavily impact aquatic life (NICNAS 2001). 

In addition to industrial releases, tetrachloroethylene can be released in the drinking water by leaching 

into the water from liners in pipes, as in the case of contaminated water in New England.  The liners were 

installed to asbestos cement pipes to take away a foul taste in the water (Larson et al. 1983). They were 

comprised of vinyl plastic and tetrachloroethylene. The manufacturers expected tetrachloroethylene to 

volatilize from the pipe after they administered the compound; however, it stayed in the coating and was 

found to progressively leach into the drinking water (Aschengrau et al. 2003). Tetrachloroethylene was 

present at concentrations ranging from 1.5 to 7,750 µg/L in Cape Cod, Massachusetts, and was reduced to 

40 µg/L after bleeding and flushing the pipes (Aschengrau et al. 2012). 

6.2.3 Soil 

Estimated releases of 152,444 pounds (~69 metric tons) of tetrachloroethylene to soils from 245 domestic 

manufacturing and processing facilities in 2011, accounted for about 13% of the estimated total 

environmental releases from facilities required to report to the TRI (TRI11 2013).  An additional 

82,923 pounds (~37 metric tons), constituting about 7% of the total environmental emissions, were 

released via underground injection (TRI11 2013). These releases are summarized in Table 6-1. 

Many of the processes in which tetrachloroethylene is used as a solvent involve recycling the compound 

by various methods (EPA 1991a). These recycling methods produce tetrachloroethylene-containing 

sludges and dirty filters that have been landfilled in the past.  Contamination of soil can occur through 

leaching of tetrachloroethylene from these disposal sites (NICNAS 2001; Schultz and Kjeldsen 1986).  

Leaking of tetrachloroethylene from underground storage tanks can also result in the contamination of 

soil. When released to the soil, tetrachloroethylene may be evaporated into the atmosphere or leach into 

the groundwater (Newcombe 2000).  Tetrachloroethylene can enter the subsurface groundwater as a 

DNAPL, migrate to the surface waters, and enter in homes and buildings (ITRC 2003). 
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6.3  ENVIRONMENTAL FATE 

6.3.1 Transport and Partitioning 

The predicted degradation half-life of tetrachloroethylene in the atmosphere indicates that long-range 

global transport is likely (Class and Ballschmiter 1986).  Indeed, monitoring data have demonstrated that 

tetrachloroethylene is present in the atmosphere worldwide and at locations far removed from 

anthropogenic emission sources (see Section 6.4.1). 

Tetrachloroethylene has been detected in a number of rainwater samples collected in the United States 

and elsewhere (see Section 6.4.2).  However, the relatively low water solubility of tetrachloroethylene 

suggests that wet deposition as a result of scavenging by rainwater occurs very slowly compared to other 

volatile chlorinated hydrocarbons.  For example, concentrations of the more water soluble 1,1,1-trichloro-

ethane fell to below detection limits during a 12-hour rain event, while concentrations of tetrachloro-

ethylene fell only slightly during the same time period (Jung et al. 1992).  Dry deposition does not appear 

to be a significant removal process (Cupitt 1987), although substantial evaporation from dry surfaces can 

be predicted from the high vapor pressure. 

Laboratory studies have demonstrated that tetrachloroethylene volatilizes rapidly from water (Chodola et 

al. 1989; Dilling 1977; Dilling et al. 1975; Okouchi 1986; Roberts and Dandliker 1983; Zytner et al. 

1989b).  One study found that only 2.7% of the initial mass of tetrachloroethylene remained in stagnant 

water with a surface-to-volume ratio of 81 m2/m3 after 4.5 hours (Zytner et al. 1989b).  Dilling et al. 

(1975) reported the experimental half-life with respect to volatilization of 1 mg/L tetrachloroethylene 

from water to be an average of 26 minutes at approximately 2°C in an open container.  This behavior is 

consistent with its high Henry's law constant and first-order kinetics.  Other factors that influence 

volatilization rates are ambient temperature, water movement and depth, associated air movement, and 

surface-to-volume ratio.  In laboratory models using beakers of stagnant water, the rate of tetrachloro-

ethylene volatilization was found to increase with increasing surface-to-volume ratio (Chodola et al. 

1989; Zytner et al. 1989b).  Data from these models also demonstrated that volatilization from water was 

independent of concentration.  

The volatilization half-life of tetrachloroethylene from a rapidly moving, shallow river (1 m deep, flowing 

1 m/second with a wind velocity of 3 m/second) has been estimated to be 4.2 hours (Thomas 1982).  

Measured volatilization half-lives in a mesocosm, which simulated the Narragansett Bay in Rhode Island 

during winter, spring, and summer, ranged from 12 days in winter conditions to 25 days in spring 
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conditions (Wakeham et al. 1983). Measurements of tetrachloroethylene levels in Lake Zurich, 

Switzerland, indicated that volatilization is the dominant removal process in surface waters 

(Schwarzenbach et al. 1979). 

Laboratory studies modeling soil systems have demonstrated that volatilization rates for 

tetrachloroethylene from soil are much less than those from water (Park et al. 1988; Zytner et al. 1989b).  

Volatilization rates from soil, like water, appear to be related to surface-to-volume ratio (Zytner et al. 

1989b).  However, the authors of these studies also found a direct relationship between the concentration 

of the chemical in soil and rate of volatilization, which contrasts with results seen in water, probably 

because concentration gradients are a more significant factor in soils than in uniformly mixed water 

(Zytner et al. 1989b).  Soil type also influenced the volatilization rate in this study, with the rate in a high 

organic carbon top soil greatly reduced compared to that of a low organic carbon, sandy loam.  

Contrasting results were seen in another study, which found that soil type had no effect on rate of 

volatilization (Park et al. 1988).  However, this may simply be a reflection of the fact that the differences 

between soils used in this study, particularly organic carbon content, were not very great.  Park et al. 

(1988) found that 20% of the applied tetrachloroethylene was volatilized 168 hours after treatment.  In 

general, it can be said that losses of tetrachloroethylene from soil resulting from volatilization seem to be 

between 10- and 100-fold slower than from water, depending on soil type, which directly affects the 

amount of sorption (Park et al. 1988; Zytner et al. 1989b). 

Sorption of chlorinated solvents is expected to be a function of the organic carbon content in sediments 

and soils.  Experimentally measured soil sorption coefficients based on the organic carbon content (Koc) 

ranged from 646 to 6,026.  The values were collected from three Danish contaminated clayey till sites.  

Each site had differing clay contents ranging from 23.0 to 27.0% clay (Lu et al. 2011).  These values are 

indicative of low mobility in the soil.  Older experimental measured Koc values for tetrachloroethylene 

ranged from 177 to 534 (Seip et al. 1986).  These values are indicative of medium-to-high mobility in soil 

(Kenaga 1980; Swann et al. 1983).  Others have also shown that tetrachloroethylene is highly mobile in 

sandy soil (Wilson et al. 1981).  Another study comparing predicted and observed sorption on clay and 

organic soils suggested that sorption/desorption to inorganic mineral surfaces may also play a role, and 

the reactions generally follow reversible pseudo first-order kinetics (Doust and Huang 1992).  The 

movement of tetrachloroethylene in soil has been confirmed by band-infiltration systems in the 

Netherlands, where tetrachloroethylene has been reported to leach rapidly into groundwater (Piet et al. 

1981). 
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In addition, mobility of tetrachloroethylene in the soil, as well as aqueous solubility, is also enhanced with 

the presence of humic substances in the surface water or waste water.  Effluent concentrations of 

tetrachloroethylene were found to be much higher with the addition of humic acid in the feed solution.  

This change in concentration was dependent on the particular chemical, the carbon content, and the 

presence of humic acid (Diamadopoulos et al. 1998). 

Several models for describing the transport of volatile chlorinated hydrocarbons in soils have been 

developed, often by fitting one or more parameters to experimental data.  One model that determined all 

parameters a priori and included transfer between solid, liquid, and gas phases found that the Henry's law 

constant was the primary determinant of transport behavior in a wet, nonsorbing aggregated medium, 

suggesting that volatilization and movement in the gas phase accounts for a large portion of 

tetrachloroethylene movement in soils (Gimmi et al. 1993). 

Similarily, exposure pathways, or models, have been developed that help to explain the transport of 

chemicals, including tetrachloroethylene, into homes through vapor intrusion.  Johnson and Ettinger 

(1991) developed a heuristic model that utilizes equations and several assumptions to estimate the vapor 

intrusion rate of contaminants.  Abreu and Johnson (2005) developed a three-dimensional model that 

takes in account the relationships between vapor source, building structure, and indoor air impacts. 

Similarily, Pennell et al. (2009) established a three-dimensional model that also implements advective and 

diffusive transport. The model was applied to five different scenarios that took into account unique 

factors such as the building structure, location, and size. 

Remediation efforts have been undertaken to facilitate the removal of sorbed and deposited chemicals in 

the environment as those same chemicals enter the subsurface as a DNAPL, get held by the soil, and leach 

out of the soil into the groundwater (Pennell et al. 1994).  Tetrachloroethylene, however, can be difficult 

to remediate, and remediation efforts, while aggressive, do not always result in complete restoration. 

Workshops have been devoted to efforts of understanding remediation efforts in soils contaminated by 

chlorinated solvents (Stroo et al. 2012).  

Soil remediation is usually characterized as either ex-situ (out of ground) or in-situ (in the ground).  Ex-

situ soil remediation is the more cost-effective technique; it usually involves the moving of the 

contaminated material to another site for disposal (CDPHE 2006).  In-situ soil remediation of DNAPLs 

involves a variety of techniques.  One of the more common techniques of in-situ soil remediation is soil 

vapor extraction that includes the formation of wells.  The wells are used to bring up vapors trapped in the 
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subsurface soils by applying negative pressure to the vadose zone (CDPHE 2006). Remediation efforts 

were undertaken in Saga, Japan, where tetrachloroethylene contaminated sites were cleaned up by soil 

vapor extraction.  Contamination of the site was likely due to tetrachloroethylene being trapped in a 

surface clay sand layer (vadose zone), gradually diffused into the soil vapor, and dissolved into rainfall 

and subsequently groundwater (Chia and Miura 2004). 

Mobilization of tetrachloroethylene with mixtures of sodium sulfosuccinate (a surfactant) was shown to 

be the best method for removing residual tetrachloroethylene from Ottawa sand (Pennell et al. 1994). 

Contaminants in the soil can also undergo remediation by in-situ thermal treatment (ISTT); however, this 

technique is the most costly and often does not eliminate all of the compound.  In-situ chemical oxidation 

(ISCO) involves the reaction of oxidation products (hydrogen peroxide, potassium permanganate, etc.) 

with the contaminant to produce less harmful byproducts; however, this technique is also costly and there 

have been issues with concentrations of the compounds rebounding after treatment.  In-situ 

bioremediation (ISB) facilitates reductive dechlorination by adding electron donors to the soil (Stroo et al. 

2012).  Reductive dechlorination in tetrachloroethylene involves the reduction of tetrachloroethylne to 

ethene by removal of the chlorine atoms (CDPHE 2006).  Stroo et al. (2012) lists chemical reduction as a 

natural process that involves degradation of the contaminant. 

A considerable number of monitoring studies have detected tetrachloroethylene in groundwater (see 

Section 6.4.2), which is further evidence of its mobility in soil. Tetrachloroethylene was observed to 

leach rapidly into groundwater near sewage treatment plants in Switzerland (Schwarzenbach et al. 1983). 

No evidence of biological transformation of tetrachloroethylene in groundwater was found in this study.  

Accurate prediction of tetrachloroethylene transport in groundwater is complicated by the sorption effect 

of organic and inorganic solids (Doust and Huang 1992).  Analysis of groundwater in Massachusetts 

contaminated with tetrachloroethylene indicated that movement of the chemical was not retarded by 

sorption to sediment (Barber et al. 1988), although this phenomenon may be site specific.  Contrasting 

data from an experiment in a sand aquifer indicated that the movement of tetrachloroethylene through the 

aquifer was significantly retarded, and the retardation was attributed to sorption (Roberts et al. 1986). 

Groundwater remediation techniques range from traditional to innovative.  Traditional methods include 

the use of a groundwater pump-and-treat method and are usually less cost effective.  Innovative methods 

include in-situ remediation (enhanced bioremediation, direct chemical oxidation, air sparging, aquifer 

flushing, and thermal treatment).  The innovative techniques usually are cost effective; however, there are 
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problems when attempting to treat the specific contaminated area with the treatment chemical (CDPHE 

2006). 

Experimentally measured bioconcentration factors (BCFs), which provide an indication of the tendency 

of a chemical to partition to the fatty tissue of organisms, have been found to range between 10 and 100 

for tetrachloroethylene in fish (Kawasaki 1980; Kenaga 1980; Neely et al. 1974; Veith et al. 1980).  

Barrows et al. (1980) estimated a BCF of 49 for bluegill sunfish.  Somewhat lower BCFs were 

determined by Saisho et al. (1994) for blue mussel (25.7) and killifish (13.4).  Measured bioconcentration 

factors in Norway spruces were 64.4–85.3 (Polder et al. 1998).  These numbers are suggestive of a low 

tendency to bioconcentrate. 

Monitoring data on tetrachloroethylene concentrations in seawater and associated aquatic organisms are 

in agreement with the experimental BCF data.  Concentrations of tetrachloroethylene (dry weight basis) 

detected in fish (eel, cod, coalfish, dogfish) from the relatively unpolluted Irish Sea ranged from below 

detection limits to 43 ppb (Dickson and Riley 1976).  Levels of 1–41 ppb (wet weight) in liver tissue up 

to 11 ppb (wet weight) in other tissue were found in various species of fish collected off the coast of Great 

Britain near several organochlorine plants (Pearson and McConnell 1975).  Clams and oysters from Lake 

Pontchartrain near New Orleans had tetrachloroethylene levels averaging up to 10 ppb (wet weight) 

(Ferrario et al. 1985). 

To assess bioaccumulation in the environment, the level of tetrachloroethylene in the tissues of a wide 

range of organisms was determined (Pearson and McConnell 1975).  Species were chosen to represent 

several trophic levels in the marine environment. The maximum overall increase in concentration 

between sea water and the tissues of animals at the top of food chains, such as fish liver, sea bird eggs, 

and sea seal blubber, was <100-fold for tetrachloroethylene.  Biomagnification in the aquatic food chain 

does not appear to be important (Pearson and McConnell 1975).  Bioaccumulation in plants may be 

indicated by the presence of tetrachloroethylene in fruits and vegetables (see Section 6.4.4), but care must 

be used in interpreting these studies because it is often unclear whether accumulation took place during 

growth or at some point after harvesting.  Exposure of plants to a contaminant can occur from the roots 

via the soil or the aboveground plants via the vapors and aerosols in the air.  Since plants contribute to 

human and animal diets, the contaminant levels may contribute significantly to the total daily intake in 

humans (Polder et al. 1998). 
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6.3.2 Transformation and Degradation 

6.3.2.1  Air 

The dominant transformation process for tetrachloroethylene in the atmosphere is a reaction with 

photochemically produced hydroxyl radicals (Singh et al. 1982).  Using the recommended rate constant 

for this reaction (1.67x10-13 cm3/molecule-second) and a typical atmospheric hydroxyl (OH) radical 

concentration of 5x105 molecules/cm3 (Atkinson 1985), the half-life is calculated at about 96 days.  Class 

and Ballschmiter (1986) estimated a half-life of approximately 70 days.  An atmospheric lifetime of 119– 

251 days was calculated by Cupitt (1987), assuming removal by reaction with hydroxyl radicals and using 

a range of temperatures, rates, and hydroxyl radical concentrations.  It should be noted that the half-lives 

determined by assuming first-order kinetics represent the calculated time for loss of the first 50% of 

tetrachloroethylene; the time required for the loss of the remaining 50% may not follow first-order 

kinetics and may be substantially longer. 

The reaction of volatile chlorinated hydrocarbons with hydroxyl radicals is temperature-dependent and is 

thus expected to proceed more rapidly in the summer months.  The degradation products of this reaction 

include phosgene, chloroacetylchlorides, formic acid, carbon monoxide, carbon tetrachloride, and 

hydrochloric acid (Gay et al. 1976; Itoh et al. 1994; Kirchner et al. 1990; Singh et al. 1975).  Reaction of 

tetrachloroethylene with ozone in the atmosphere is too slow to be an effective agent in tetrachloro-

ethylene removal (Atkinson and Carter 1984; Cupitt 1987). 

EPA considers the photochemical reactivity of tetrachloroethylene leading to the production of ambient 

ozone to be negligible (EPA 1996a). Therefore, tetrachloroethylene has been added to the list of 

compounds excluded from the definition of volatile organic compounds for purposes of preparing state 

implementation plans to attain the national ambient air quality standards for ozone. 

6.3.2.2  Water 

Studies of photolysis and hydrolysis conducted by Chodola et al. (1989) demonstrated that photolysis did 

not contribute substantially to the transformation of tetrachloroethylene.  Chemical hydrolysis appeared to 

occur only at elevated temperature in a high pH (9.2) environment, and even then, at a very slow rate. 

Results from experiments conducted at high pH and temperature were extrapolated to pH 7 and 25°C 

(Jeffers et al. 1989), and the estimated half-life was 9.9x108 years, which suggests that hydrolysis does 
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not occur under normal environmental conditions.  In contrast, estimates of the hydrolysis half-life of 

tetrachloroethylene under corresponding conditions were cited in other studies as about 9 months (Dilling 

et al. 1975) and 6 years (Pearson and McConnell 1975).  It is not clear why there is such a large 

difference between these values; however, errors inherent in the extrapolation method used in the first 

approach (Jeffers et al. 1989) and the presence of transformation factors other than chemical hydrolysis, 

such as microbial degradation, in the second approach (Dilling et al. 1975; Pearson and McConnell 1975) 

may account for the discrepancy in the estimates of half-lives. 

Most tetrachloroethylene present in surface waters can be expected to volatilize into the atmosphere. 

However, tetrachloroethylene is DNAPL and as such, is denser than water and only slightly soluble in 

water.  The tetrachloroethlyene that is not immediately volatilized may be expected to sink and be 

removed from contact with the surface (Doust and Huang 1992).  Volatilization will therefore not be a 

viable process for this fraction of tetrachloroethylene, which may instead be rapidly transported into 

groundwater by leaching through fissures rather than matrix pores (Chilton et al. 1990).  The sinking of 

tetrachloroethylene into groundwater also makes cleanup and remediation efforts difficult. 

Various aerobic biodegradation screening tests and laboratory studies have shown tetrachloroethylene to 

be resistant to biotransformation or biodegraded only slowly (Bouwer and McCarty 1982; Bouwer et al. 

1981; Wakeham et al. 1983).  Newer studies indicate that aerobic degradation of tetrachloroethylene is 

possible with the white rot fungus, Trametes versicolor. The degradation product, tichloroacetic acid, is 

formed by cytochrome P450-mediated oxidation of tetrachloroethylene (Marco-Urrea et al. 2006). 

Anaerobic screening studies have noted more rapid biodegradation, with the presence of microbes that are 

adapted to tetrachloroethylene (Parsons et al. 1984, 1985; Tabak et al. 1981).  Biotransformation is the 

primary factor in the anaerobic degradation of tetrachloroethylene fromsoil and groundwater pollution. 

Anaerobic biodegradation is possible by reductive dechlorination, with the degradation products of 

tetrachloroethylene being trichloroethylene, cis/trans-dichloroethylene, vinyl chloride, and ethane (see 

below).  Tetrachloroethylene is dehalogenated to trichloroethylene (TCE), trichloroethylene to cis/trans-

dichloroethylene (DCE), dichloroethylene to vinyl chloride, and eventually vinyl chloride to ethene.  

While complete degradation to ethene is possible, traces of vinyl chloride usually remain because of the 

rate-limiting step from vinyl chloride to ethene. 
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Cl Cl H Cl H H H HH H 

Cl Cl Cl Cl Cl Cl H HH Cl 
PCE TCE DCE vinyl chloride ethene 

An anaerobic enrichment culture that degraded 99% of large concentrations of tetrachloroethylene to 

ethene in the absence of methanogenesis was discovered in 1991 (DiStefano et al. 1991).  

Tetrachloroethylene was also found to be converted to ethene by a culture containing Dehalococcoides.  

The culture was obtained from a chlorinated ethene anaerobic contaminated aquifer in Bitterfield, 

Germany. It was found that the microorganisms use tetrachloroethylene and other chlorinated ethenes as 

electron acceptors with lactate as the electron donor.  The reductive dechlorination process also allows for 

the growth and energy conservation of the microorganisms (Cichocka et al. 2010). 

New bacteria are also being discovered from contaminated sites. Tetrachloroethylene is transformed via 

trichloroethylene to cis-1,2-dichloroethene at high rates with the presence of the aerobic strain MS-1 

(Sharma and McCarty 1996). In addition, new and emerging tests, such as isotope fractionation, have 

proven to be useful in the analysis of the dechlorination of tetrachloroethylene to ethene in contaminated 

aquifers.  With isotope fractionation, a shift in the compound-specific isotope ratios indicates that 

biodegradation has occurred.  The origin or source of the contaminant can also be identified from this 

shift (Hunkeler et al. 1999). 

6.3.2.3  Sediment and Soil 

Biodegradation of tetrachloroethylene in soil was thought to occur only under specific conditions, and 

then only to a limited degree.  When subsurface soil samples containing toluene-degrading bacteria were 

collected from a floodplain in Oklahoma and incubated with tetrachloroethylene, no detectable 

degradation occurred (Wilson et al. 1983a).  However, recent studies have indicated that 

tetrachloroethylene is able to be degraded under both aerobic and anaerobic conditions.  

Tetrachloroethylene was aerobically degraded by Pseudonomas stutzeri OX1 with the expression of 

toluene-o-xylene monoxygenase (Ryoo et al. 2000).  Anaerobically, tetrachloroethylene is metabolized by 

microorganisms through a reductive dechlorination process to trichloroethylene, dichloroethylene, and 

vinyl chloride, with the major intermediate being trichloroethylene (Vogel and McCarty 1985). In one 

study, anaerobic enrichment cultures, which support methanogenesis, were found to be capable of 

dechlorinating tetrachloroethylene to ethylene in the presence of an electron donor (Freedman and Gossett 
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1989).  Recent studies have also indicated that the complete anaerobic degradation of tetrachloroethylene 

can occur with mixed cultures and sediments (Krumholz et al. 1996).  

Cabirol et al. (1996) found that a methanogenic and sulfate-reducing mixed culture from the anaerobic 

sludge of a waste water treatment plant has the potential to dechlorinate tetrachloroethylene through 

reductive dechlorination.  Tetrachloroethylene was found to have completely disappeared within 37 days 

and as it disappeared, trichloroethylene was formed.  Cabirol et al. (1998) also found that tetrachloro-

ethylene was completely degraded with the same cultures in a fixed bed reactor.  In addition, anaerobic 

biodegradation of very high concentrations of tetrachloroethylene (600 µM) occurred in a continuous 

flow system in a period of <21 months.  Very high concentrations of tetrachloroethylene were completely 

degraded to vinyl chloride in the 21 months, and vinyl chloride was observed to be degraded to ethene 

over a longer period of time (Isalou et al. 1998).  

Tetrachloroethylene was 94% anaerobically degraded using a mixed enriched culture.  Culture 

enrichment was performed on a sample contaminated with tetrachloroethylene and other halogenated 

aliphatic compounds obtained from ditch sludge mixed with sewage (Chang et al. 1998).  

Tetrachloroethylene was also completely degraded to the intermediate 1,2-dichlroethene in 13 days, and 

subsequently to ethene after 130 days, with a mixed anaerobic culture AMEC-4P (Kim et al. 2010). 

In addition, new isolates that degrade tetrachloroethylene are being discovered, such as the strain 

Propionibacterium sp. HK-1, which was able to degrade tetrachloroethylene by 20% (Chang et al. 2011). 

6.4  LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT 

Reliable evaluation of the potential for human exposure to tetrachloroethylene depends in part on the 

reliability of supporting analytical data from environmental samples and biological specimens. 

Concentrations of tetrachloroethylene in unpolluted atmospheres and in pristine surface waters are often 

so low as to be near the limits of current analytical methods. The analytical methods available for 

monitoring tetrachloroethylene in a variety of environmental media are detailed in Chapter 7. 

6.4.1 Air 

Outdoor (ambient) air monitoring studies in the United States have shown tetrachloroethylene 

concentrations of 400–2,100 ng/m3 (0.058–0.31 ppb) in Portland, Oregon, in 1984 (Ligocki et al. 1985), 

5.2 μg/m3 (0.77 ppb) in Philadelphia, Pennsylvania, in 1983–1984 (Sullivan et al. 1985), 0.24–0.46 ppb in 
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three New Jersey cities during the summer of 1981 and the winter of 1982 (Harkov et al. 1984), and 0.29– 

0.59 ppb in seven cities in 1980–1981 (Singh et al. 1982).  A Total Exposure Assessment Methodology 

(TEAM) study of three industrialized areas detected levels ranging from 0.24 to 9.0 μg/m3 (0.035– 

1.33 ppb) (Hartwell et al. 1987).  In these studies, levels were found to vary between the fall/winter 

season and the spring/summer season, with fall/winter levels usually higher. This is consistent with the 

observation that higher temperatures increase the rate of reaction with hydroxyl radicals and subsequent 

degradation of tetrachloroethylene (see Section 6.3.2.1). 

Tetrachloroethylene was detected at levels ranging from 32 to 75 ng/m3 (0.0047–0.011 ppb) at five 

locations in the Antarctic (Zoccolillo et al. 2009). It was also found that there were elevated levels of 

tetrachloroethylene and other volatile chlorinated hydrocarbons in the winter in Niigata, Japan between 

April 1989 and March 1992 (Kawata and Fujieda 1993).  A rural site in this study had annual mean 

concentrations between 0.031 and 0.045 ppb, while four industrial sites had mean concentrations between 

0.082 and 1.0 ppb. 

Data from ambient air monitoring studies in Canada have shown tetrachloroethylene concentrations of 

0.03–0.73 ppb in urban locations and 0.03–0.06 ppb in a rural location (CEPA 1993). 

The Air Quality System (AQS) database is EPA's repository of criteria air pollutant and HAPs monitoring 

data.  Detailed air monitoring data for tetrachloroethylene in various locations in the United States for 

2006 are shown in Table 6-3 (EPA 2013h).  In general, the average concentration of tetrachloroethylene 

in outdoor air is <1 μg/m3 (0.15 ppb) for the majority of the U.S. locations sampled; however, five 

24-hour average values were measured in Minnesota, New York, Virginia, and Michigan that exceeded 

1 μg/m3 . 

Tetrachloroethylene was detected in indoor and outdoor air at 0.15–3.5 and 0.01–1.3 µg/m3, respectively, 

above a contaminated site in Colorado (Agency for Toxic Substances and Disease Registry 2006). 

Measurement of 8-hour time-weighted average exposures in the breathing zones of workers from 196 dry 

cleaning plants in Australia yielded mean and geometric mean exposure estimates of 10.3 and 4.7 ppm, 

respectively (NICNAS 2001).  About 90% of the exposures were less than 25 ppm, and only 3% of 

exposures were greater than 50 ppm. 
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Table 6-3.  Tetrachloroethylene Concentrations in Ambient Air for 2006 

Concentration (μg/m3) Number of samples Statea 

0.05–0.64 21–70 CA 
0.34 61 CO 
0.35 61 DC 
0.09–0.44 58–59 DE 
0.10–0.69 42–61 FL 
0.10–0.45 19–61 GA 
0.34 59 HI 
0.24–0.48 21–26 IA 
0.34–0.76 60–61 IL 
0.17–0.19 41–61 IN 
0.77–0.88 33–61 KY 
0.19–0.22 51–52 MA 
0.24–0.36 56–61 MD 
0.26–1.10 21–50 MI 
0.09–6.65 41–58 MN 
0.17 59 MO 
0.14–0.18 59–66 MS 
0.24–0.58 43–58 NC 
0.17–0.23 26–31 NH 
0.12–0.35 53–58 NJ 
0.17–3.32 40–56 NY 
0.20 41 OK 
0.34 24–61 OR 
0.17–0.39 37–61 PA 
0.09–0.25 40–57 PR 
0.15–0.32 53–61 RI 
0.17 60 SC 
0.07–0.08 59–61 SD 
0.06–0.08 44–45 TN 
0.17–0.37 42–61 TX 
0.17 59 UT 
0.20–1.67 57–60 VA 
0.34–0.37 23–54 VT 
0.34 61 WI 
0.13–0.39 43–51 WV 

aPost office abbreviations used. 

Source: EPA 2013h 
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In addition, in data reported by the Dow Company in the United States, the TWA exposures were 37, 9, 

and 5 ppm for first-, third-, and fourth-/fifth-generation dry cleaning machines, respectively.  It was 

discovered that the emissions of tetrachloroethylene were less with the introduction of third- and 

fourth-/fifth-generation machines, which included an integrated carbon absorber and an interlocking 

system (to reduce venting) (NICNAS 2001). 

In a study conducted by Roda et al. (2013), tetrachloroethylene was found in the indoor air of Paris 

homes.  Air samples were collected using passive devices.  Annual levels ranged from 0.6 to 124.2 µg/m3 

(0.09–18.3 ppb) in residential homes that were in close proximity to dry cleaning facilities and do-it-

yourself activities (e.g., photographic development, silverware), had air vents, and were built prior to 

1945. 

In another locality in France, the highest measured concentration of tetrachloroethylene (678 µg/m3) was 

found in front of a dry cleaning shop in the indoor air of a shopping center.  The highest mean 

concentrations in apartments and establishments directly above the dry cleaning facility ranged from 

296 µg/m3 (carbon absorber equipped machine) to 2.9 mg/m3 (carbon absorber unequipped machine). 

The study was carried out with passive samplers (Chiappini et al. 2009). 

In a study conducted in Hudson County, New Jersey, residents above cleaners that used exhaust fans were 

exposed to concentrations of 1.2 mg/m3 of tetrachloroethylene, while residents above cleaners that did not 

use exhaust fans were exposed to 2.5 mg/m3 .  Adherence to all of EPA regulations was also associated 

with decreased tetrachloroethylene levels above dry cleaning facilities.  It was found that the mean 

48-hour average concentration in residences above cleaners that adhered to EPA’s regulations was 

0.57 mg/m3, while the concentration was 2.1 mg/m3 with cleaners that partially followed EPA’s 

regulations and 2.7 mg/m3 with cleaners with no documentation of adherence to the rules (Garetano and 

Gochfield 2000).  In an older study, elevated levels of tetrachloroethylene were also found in apartments 

above dry cleaning facilities (Schreiber et al. 1993).  Tetrachloroethylene concentrations ranged from 

0.04 to 8.1 ppm in six apartments above dry cleaning facilities when measurements were completed from 

7 a.m. to 7 p.m., and from 0.01 to 5.4 ppm when measured from 7 p.m. to 7 a.m.  Tetrachloroethylene 

concentrations were higher above facilities using transfer-type dry cleaning machines compared to dry-to-

dry machines, although the highest levels were found above a facility using an old, poorly maintained 

dry-to-dry machine.  Tetrachloroethylene concentrations in nearby apartments were <0.001–0.015 ppm 

during the day and <0.001–0.01 ppm at night.  An EPA final rule has called for the phase out of 

tetrachloroethylene use in dry cleaners above residential areas (EPA 2006). 
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Levin and Hodgson (2003) compiled information from 13 studies for exising residences, new residences, 

and office buildings and compared the central tendency concentrations among each residence or building.  

The central tendency concentrations were >3 times higher for the office building than for the existing 

residences.  However, even with the prevalence of tetrachloroethylene in office builidngs, the authors 

concluded that the average indoor concentrations of tetrachloroethylene have decreased since 1990. 

Johnston and Gibson (2013) detected tetrachloroethylene in the indoor air of homes of individuals 

exposed to tetrachloroethylene through soil vapor intrusion.  Maximum levels ranged from <0.13 to 

1.50 µg/m3 in the homes in San Antonio, Texas.  Forand et al. (2012) reported that tetrachloroethylene 

levels ranged from 0.1 to 24 µg/m3 in indoor air after residents in the Village of Endicott, New York were 

exposed to tetrachloroethlyene through vapor soil intrusion.  These levels are much higher than the 

average U.S. indoor residential air concentrations measured by the EPA.  Burk and Zarus (2013) reported 

selected results from 135 vapor intrusion public health assessments and consultations for 121 sites 

published on ATSDR’s website between 1994 and 2009.  Tetrachloroethylene indoor air levels were 

attributed to vapor intrusion and detected at 39 sites; levels at 5 of these sites were high enough to be 

considered a public health hazard.  In addition to vapor instrusion, tetrachloroethylene can also be present 

in the indoor air of homes from sewer gas emissions coming up through the bathroom plumbing (Pennell 

et al. 2013). 

Tetrachloroethylene was present in 62.5% of background samples collected in North American residences 

between 1990 and 2005 (EPA 2011). In a study conducted by Sack et al. (1992), 63 out of 1,159 of 

household products contained tetrachloroethlylene.  The percentages of tetrachloroethylene in the 

household products were 10.8% in automative products, 2.7% in household cleaners/polishes, 1.3% in 

paint-related products, 18.7% in fabric and leatlher treatments, 2.9% in cleaners for electronic equipment, 

8.1% in oils, greases and lubricants, 5.3% in adhesive-related products, and 5.6% in miscellaneous 

products. 

Building occupants can also be exposed to tetrachloroethylene in the indoor air through cleaning products 

and air fresheners.  Ventilation, mixing within a room, mixing between rooms, homogenous and 

heterogenous transformations, sorptive interactions on surfaces, and active air cleaning are factors that 

influence the distribution and behavior of tetrachloroethylene in indoor air (Nazaroff and Weschler 2004). 

Carpet also can also be a source of tetrachloroethylene in indoor air as it sorbs the compound in the fibers 

of the carpet (Won et al. 2000). 
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6.4.2 Water 

Tetrachloroethylene was detected in 130 of 1,179 well samples in the drinking water from domestic wells 

in the United States (Rowe et al. 2007).  

Williams et al. (2002) reported annual levels of tetrachloroethylene measured in 3,422–4,218 California 

drinking water sources between 1995 and 2001.  Approximately 10–13% of the sampled drinking water 

sources contained detectable levels over this 7-year period.  The average annual detected concentration of 

tetrachloroethylene ranged from 17.0 μg/L (2000) to 28.0 μg/L (1998). 

Tetrachloroethylene and several other volatile organic compounds have been detected at high levels in 

drinking water at the Camp Lejeune, Marine Corps Base in North Carolina (Agency for Toxic Substances 

and Disease Registry 1998, 2013).  Tetrachloroethylene levels in tap water were shown to range from 

<1 to 215 μg/L (ppb), and groundwater levels as high as 170,000 μg/L (ppb) were observed in 1985.  The 

maximum contaminant level (MCL) for tetrachloroethylene is 5 μg/L (ppb). 

Tetrachloroethylene was monitored in a comprehensive survey conducted by the United States Geological 

Survey (USGS) of volatile organic compounds in private and public groundwater wells used for drinking 

water (USGS 2006).  Tetrachloroethylene was identified in approximately 4% of 3,498 aquifer samples at 

a median concentration of 0.090 μg/L for the samples having positive detections. The percentage of 

samples exceeding the 5 μg/L MCL was 0.70% (USGS 2006).  In an analysis of domestic groundwater 

wells, the median concentration of tetrachloroethylene was reported as 0.058 μg/L for samples having 

positive detections. 

Tetrachloroethylene was detected in groundwater from 16 out of 30 wells located in Salt Lake Valley, 

Utah, at a maximum concentration of 7.8 μg/L (USGS 2003).  Although the median concentration was 

<0.1 μg/L, water from four wells in the northwestern part of the valley had concentrations >1 μg/L. 

In other countries, drinking water samples from Zagreb, Croatia, contained 0.36–7.80 μg/L (0.36– 

7.80 ppb) (Skender et al. 1993). Rainwater samples collected in Tokyo between October 1989 and 

September 1990 had a mean tetrachloroethylene level of 99 ng/L (99 ppt), with higher levels in samples 

obtained during the winter (Jung et al. 1992).  The World Health Organization (WHO) guideline value in 

drinking water for tetrachloroethylene is 40 µg/L (WHO 2010). 
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The mean detected concentration of tetrachloroethylene in the drinking water of California has been 3– 

6 times higher than the MCL of 5 µg/L from 1995 to 2000 (Williams et al. 2002).  Contamination of 

drinking water supplies with tetrachloroethylene varies with location and with the drinking water source 

(surface water or groundwater).  Generally, higher levels are expected in groundwater because 

tetrachloroethylene volatilizes rapidly from surface water. The total daily intake value of ingestion of 

tetrachloroethylene in drinking water was calculated to be 1.36–2.29 L/day (CEPA 1999).  

6.4.3 Sediment and Soil 

Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, 

from October 2010 to September 2011.  More than half of the 30 soil-gas samplers installed at one 

location had tetrachloroethylene mass greater than the minimum detection limit (MDL) of 0.02 μg.  

The bottom sediments and interstitial water from Watson creek at Aberdeen Proving Ground, Maryland, 

were found to contain concentrations of tetrachloroethylene ranging from 310 to 550 µg/L.  The 

concentrations in the bottom sediment were found to be similar to observed concentrations of 

tetrachloroethylene in wells near the shoreline.  In addition, tetrachloroethylene in the sediment was found 

to be an indicator of groundwater contamination (Vroblesky et al. 1991). 

6.4.4 Other Environmental Media 

Tetrachloroethylene can be absorbed from the atmosphere by foods and concentrated over time, so that 

acceptable ambient air levels may still result in food levels that exceed acceptable limits (Grob et al. 

1990).  The study authors estimated that, in order to limit food concentrations of tetrachloroethylene to 

50 μg/kg (the maximum tolerated limit for food halocarbons in Switzerland), the level in surrounding air 

should not exceed 12.5 μg/m3 (0.002 ppm).  Since the accepted levels found near emission sources are 

often far above this limit, foods processed or sold near these sources may routinely exceed the Swiss 

tolerated tetrachloroethylene concentration, thus making the setting of air emission standards problematic. 

It is also noteworthy that the limits recommended by Grob et al. (1990) exceed acceptable ambient air 

concentrations for many regions of the United States (see Chapter 8). 

An analysis of six municipal solid waste samples from Hamburg, Germany, revealed levels of 

tetrachloroethylene ranging from undetectable to 1.41 mg/kg (1.41 ppm) (Deipser and Stegmann 1994).  

***DRAFT FOR PUBLIC COMMENT*** 

http:1.36�2.29


   
 

  
 
 

 
 
 
 

  

  

 

 

  

    

  

  

   

    

    

  

  

  

 

 

    

  

   

     

 

   

 

  

  

 

 

       

 

  

  

 

 

248 TETRACHLOROETHYLENE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

In a study analyzing automobile exhaust for chlorinated compounds, tetrachloroethylene was not detected 

(Hasanen et al. 1979) 

In older studies, tetrachloroethylene was detected in a variety of foods ranging from 1 to 230 ng/g (1– 

230 ppb), with a mean of 12 ng/g (12 ppb) (Daft 1989).  An analysis of intermediate grain-based foods in 

1985 showed the following tetrachloroethylene levels (in ppb): corn muffin mix, 1.8; yellow corn meal, 

0.0; fudge brownie mix, 2.45; dried lima beans, 0.0; lasagna noodles, 0.0; uncooked rice, 0.0; and yellow 

cake mix, 2.5 (Heikes and Hopper 1986).  Levels of tetrachloroethylene detected in margarine from 

several supermarkets in the Washington, DC, area were 50 ppm in 10.7% of the products sampled (Entz 

and Diachenko 1988).  The highest levels (500–5,000 ppb) were found in samples taken from a grocery 

store located near a dry cleaning shop.  Additional analysis showed that the concentrations were highest 

on the ends of the margarine stick and decreased toward the middle.  According to the study authors, 

these findings suggested that contamination occurred after manufacturing rather than during the 

manufacturing process (Entz and Diachenko 1988). 

In more recent studies, tetrachloroethylene has been detected in lettuce sap, mid-vein, and mesophyll 

samples grown on contaminated soils (Boekhold et al. 1989).  Tetrachloroethylene has also been detected 

in fatty foods such as butter, cream, vegetable oil, margarine, sausage, and cheese in residences or food 

stores near dry cleaners (Schreiber et al. 1993). 

In Switerzland, the highest concencentration of tetrachloroethylene was in the milk and meat products at 

3–3490 µg/kg.  In Germany, in a dry cleaning shop and in an apartment above a dry cleaning shop, 

concentrations of tetrachloroethylene were highest in an ice-cream confection at 18,750 µg/kg and butter 

at 58,000 µg/kg.  The total daily intakes for Switerzland and Germany were 160 and 87 µg/day, 

respectively (de Raat 2003). 

Likewise, tetrachloroethylene can be present in breast milk. Pellizzaari et al. (1982) found that 

tetrachloroethylene was present as frequent as seven times in the eight samples analyzed from the 

mother’s milk in four urban areas.  Bagnell and Ellenberger (1977) also observed tetrachloroethylene in a 

mother’s milk in a case study that resulted in the baby getting sick with obstructive jaundice and 

hepatomegaly. 
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6.5  GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

The most important routes of exposure to tetrachloroethylene for most members of the general population 

are inhalation of the compound in the indoor and outdoor (ambient) air and ingestion of contaminated 

drinking water.  Available data generally indicate that dermal exposure is not an important route for most 

people.  General population exposure from inhalation of the indoor and outdoor (ambient) air varies 

widely depending on location.  While background levels are generally in the low-ppt range in rural and 

remote areas, values in the high-ppt and low-ppb range are found in urban and industrial areas and areas 

near point sources of pollution. 

Tetrachloroethylene exposure was measured in the population of children from two inner-city schools in 

Minneapolis, Minnesota.  Concentrations ranged from 0.1 to 1.3 µg/m3 in four locations, including 

outdoors, outdoors at school, indoors at home, and personal VOC samples.  It was found that the indoor 

air at home contained the highest levels of tetrachloroethylene, followed by the personal samples, 

outdoors, and indoors at school (Adgate et al. 2004). 

Tetrachloroethylene in the ambient air was assessed in Tokyo with participants who were not directly 

exposed to tetrachloroethylene in their workplace.  It was found that the mean levels of 

tetrachloroethylene in the breathing air was 1.1±0.8 µg/m3 and the daily intake was calculated to be 

23 µg/person (Nakahama et al. 1997).  

Indoor air of apartments where dry cleaners lived was about 0.04 ppm compared to 0.003 ppm in the 

apartments of the controls (Aggazzotti et al. 1994a), indicating that dry cleaners serve as a source of 

exposure for their families. Breath concentrations of tetrachloroethylene in dry cleaners, family members, 

and controls were 0.65, 0.05, and 0.001 ppm, respectively (Aggazzotti et al. 1994b).  A study that 

combined PBPK modeling with a single compartment model for a “typical” home (Thompson and Evans 

1993) suggested that tetrachloroethylene levels in a home with a worker exposed to a TWA of 50 ppm for 

8 hours as the only source of tetrachloroethylene could result in concentrations of 0.004–0.01 ppm.  The 

air exchange rate in the house made a larger difference in the house air concentrations than the choice of 

metabolic data used in the PBPK model. 

The Fourth National Report on Human Exposure to Environmental Chemicals (CDC 2012) provides an 

ongoing assessment of the exposure of the U.S. population to environmental chemicals by the use of 

biomonitoring (CDC 2012).  Blood concentrations of tetrachloroethylene ranged from below the limit of 

***DRAFT FOR PUBLIC COMMENT*** 

http:0.004�0.01


   
 

  
 
 

 
 
 
 

  

   

     

 

   

  

 

  

    

 

     

   

      

    

        

  

  

      

 

   

  

  

     

  

    

  

  

    

    

  

 

    

 

 

 

250 TETRACHLOROETHYLENE 

6.  POTENTIAL FOR HUMAN EXPOSURE 

detection up to 0.14 ng/mL in a random sampling of 1,317 participants in the 2003–2004 U.S. NHANES 

survey. Table 6-4 provides the geometric means. 

Higher blood levels of tetrachloroethylene have been noted for urban and industrial residential settings 

when compared to rural settings.  Residing near dry cleaning facilities or storing recently dry-cleaned 

clothes at home can contribute to increased blood tetrachloroethylene levels.  In occupationally exposed 

workers, tetrachloroethylene blood levels have been reported to be many thousand times higher than in 

the unexposed general population. 

Tetrachloroethylene has been measured in the blood and urine in a sample of the general population in 

Italy (Brugnone et al. 1994).  In rural locations, tetrachloroethylene was detected in the blood of 76% of 

107 individuals tested at a mean concentration of 62 ng/L, while in 106 urban subjects, it was detected in 

41% at a mean concentration of 263 ng/L.  Measurement of tetrachloroethylene in urine showed similar 

results for rural (74% positive; average 119 ng/L) and urban populations (74% positive; average 90 ng/L).  

Tetrachloroethylene was also detected in urine samples of dry cleaning workers at concentrations of 1– 

19.9 µg/L (Rutkiewicz et al. 2011).  In Zagreb, Croatia, tetrachloroethylene concentrations ranged from 

210 to 7,800 ng/L in the drinking water and from <10 to 239 ng/L in blood (Skender et al. 1994). 

Although the use of tetrachloroethylene in the dry cleaning industry makes this chemical a potential 

hazard for exposed workers, casual contact by the general population with dry-cleaned clothing may pose 

a slight risk as well.  One study showed that the storage of newly dry-cleaned garments in a residential 

closet resulted in tetrachloroethylene levels of 0.5–2.9 mg/m3 (74–428 ppb) in the closet after 1 day, 

followed by a rapid decline to 0.5 mg/m3 (74 ppb), which persisted for several days (Tichenor et al. 

1990).  Initial “airing out” of the clothes for 4–8 hours had little effect on the resulting emissions, 

presumably because diffusion through the fabric, rather than surface evaporation, was rate-limiting.  A 

study of nine homes into which ≤10 freshly dry-cleaned garments were introduced showed an increase in 

tetrachloroethylene levels in the air of seven homes (Thomas et al. 1991). The increases ranged from 2 to 

30 times the levels before the introduction of the garments, and the magnitude of the increase was highly 

correlated with the number of garments divided by the house volume.  Tetrachloroethylene levels in 

personal breathing space and expired air of residents were also monitored and found to be generally 

correlated with indoor air concentrations.  An investigation of different methods for reducing 

tetrachloroethylene retention in dry-cleaned fabrics found that, while airing at 20°C for several hours had 

little effect, airing at 45°C greatly reduced retention time, and was thus recommended as a way to reduce 

consumer exposure from garments (Guo et al. 1990). 
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Table 6-4.  Geometric Mean and Selected Percentiles of Tetrachloroethylene  
Blood Concentrations (in ng/mL) for the U.S. Population from NHANES  

Geometric 50th 75th 90th 95th Sample 
Survey mean percentile percentile percentile percentile size 

Total 2001–2002 *a <LOD 0.50 0.100 0.190 978 
2003–2004 * <LOD <LOD 0.076 0.140 1317 

20–59 years age 2001–2002 * <LOD 0.50 0.100 0.190 978 
20–59 years age 2003–2004 * <LOD <LOD 0.076 0.140 1317 
Males 2001–2002 * <LOD 0.50 0.110 0.210 457 
Males 2003–2004 * <LOD <LOD 0.082 0.230 639 
Females 2001–2002 * <LOD 0.50 0.100 0.150 521 
Females 2003–2004 * <LOD <LOD 0.069 0.120 678 
Mexican/American 2001–2002 * <LOD <LOD 0.060 0.070 226 
Mexican/American 2003–2004 * <LOD <LOD 0.049 0.110 248 
Non-Hispanic 2001–2002 * <LOD <LOD 0.070 0.110 195 
blacks 
Non-Hispanic 2003–2004 * <LOD <LOD 0.086 0.220 284 
blacks 
Non-Hispanic 2001–2002 * <LOD 0.50 0.110 0.210 487 
whites 
Non-Hispanic 2003–2004 * <LOD <LOD 0.072 0.140 686 
whites 

aThe geometric mean was not calculated because the proportion of the results below LOD was too high to provide a 
valid result. 

LOD = limit of detection; NHANES = National Health and Nutrition Examination Survey 

Source:  CDC 2012 
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A survey of 15 coin-operated dry cleaning establishments in Hamburg, Germany, showed indoor air 

concentrations of tetrachloroethylene between 3.1 and 331 mg/m3 (457 and 48,812 ppb) and a 

concentration of 4.5 mg/m3 (664 ppb) in one building 7.5 months after removal of dry cleaning machines, 

indicating that tetrachloroethylene may be absorbed by building materials and then slowly released into 

the air over time (Gulyas and Hemmerling 1990). This study also indicated that a car transporting a 

freshly dry-cleaned down jacket had air concentrations of 20.4 mg/m3 (3,008 ppb) after 25 minutes and 

24.8 mg/m3 (3,657 ppb) after 108 minutes. 

A survey of dry cleaning operators conducted by the International Fabricare Institute from 1980 to 1990 

indicated that 1,302 operators in plants with transfer units were exposed to a TWA of 48.4 ppm, while 

1,027 operators in plants with dry-to-dry units were exposed to a TWA of 16.9 ppm (Andrasik and 

Cloutet 1990).  An in-depth series of studies of the dry cleaning industry was completed by NIOSH in 

1997.  These studies evaluate worker exposure to tetrachloroethylene at several locations in the United 

States and examine how the exposure can be controlled (Earnest 1995, 1996; Earnest and Spencer 1995; 

Earnest et al. 1995a, 1995b, 1995c; Spencer et al. 1995).  Personal and area air samples were obtained. 

Results of the studies showed that the TWA concentrations of tetrachloroethylene were within the 

ACGIH recommended threshold limit value of 25 ppm (ACGIH 2012).  The primary exposure of the 

workers occurred during the loading and unloading of the dry cleaning machines. 

A study was conducted on the exposure of workers in six commercial and three industrial dry cleaners.  It 

was found that the operator’s mean TWA exposures in the commercial dry cleaning shops and industrial 

cleaners were 4.1 and 4.6 ppm.  Both the presser and the customer service personnel had significantly 

lower TWA exposures of 0.5 and 0.1 ppm, respectively.  The results were again lower than the 

occupational limit values in the United States, with the outdoor tetrachloroethylene emissions below the 

limit values (Raisanen et al. 2001). 

In a study conducted in Iran, concentrations of tetrachloroethylene uptake went from 6.58 µg/L before 

exposure to 18.04 µg/L after the end of the shift (post exposure) with an 8 kg dry cleaning machine.  

Likewise, concentrations increased from 14.17 to 36.77 µg/L with a 12-kg dry cleaning machine and from 

21.95 to 63.55 µg/L in an 18-kg dry cleaning machine (Rastkarie et al. 2011). 

Individuals are not exposed to the same magnitude of tetrachloroethylene as in the past.  In a study 

conducted in Italy, the mean concentration of tetrachloroethylene in the air was 52.32 mg/m3 with 
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tetrachloroethylene concentrations in the blood end-shift at 0.617 mg/L (pre-shift: 0.304 mg/L) and in the 

urine at 0.0204 mg/L (pre-shift: 0.012).  It was also found that the smaller shops that employed 1– 

3 people had the greatest exposure to tetrachloroethylene (Macca et al. 2012). 

In addition, a biological exposure assessment was done with female workers in an Ohio dry cleaning 

facility.  Four dry cleaning facilities and 18 women participated in the assessment.  The dry cleaning 

machines were 30–60-pound drums and ranged from 9 to 12 years old.  Personal breathing zone samples, 

as well as blood, urine, and post-shift exhaled breath samples, were collected for the women. It was 

found that post-shift exhaled breath tetrachloroethylene increased during the week from 0.94 ppm on 

Wednesday to 1.38 ppm on Thursday and to 1.63 ppm on Friday; however, the tetrachloroethylene in 

exhaled breath and urine decreased after 2 days without renewed exposure to tetrachloroethylene 

(McKernan et al. 2008). 

Various consumer products have been found to contain tetrachloroethylene.  These include printing ink, 

glues, sealants, polishes, lubricants, and silicones (ACGIH 1991).  In addition, VOCs may be emitted 

from cleaners, air fresheners, scented candles, carpets, insulation, paint, etc.  Tetrachloroethylene was 

detected in 64% of samples of indoor background air from 1990 in residences not affected by vapor 

intrusion (Dawson and McAlary 2009). 

Showering or bathing with contaminated water can also result in tetrachloroethylene exposure.  Rao and 

Brown (1993) described a combined PBPK exposure model that estimates brain and blood levels of 

tetrachloroethylene following a 15-minute shower or 30-minute bath with water containing 1 mg 

tetrachloroethylene/L.  The PBPK model is described further in Section 3.4.5.  The exposure model 

assumed that the shower or bath would use 100 L of water, the air volume in the shower stall or above the 

bath tub was 3 m3, and the shower flow rate was 6.667 L/minute.  The exposure model was validated with 

data for chloroform and trichloroethylene, but not tetrachloroethylene.  Using this model, Rao and Brown 

(1993) estimated that shower air would contain an average of 1 ppm and that the air above the bathtub 

would contain an average of 0.725 ppm if the water contained 1 mg tetrachloroethylene/L. 

Total tetrachloroethylene intake for Canadians has been estimated to range from 1.2 to 2.7 μg/kg/day 

(CEPA 1993).  Indoor air exposure (assuming 20 hours/day) from the use of household products 

containing tetrachloroethylene and from recently dry-cleaned clothes accounted for 1.2–1.9 μg/kg/day.  

Drinking water and food consumption contributed 0.002–0.03 and 0.12–0.65 μg/kg/day, respectively. 

Data were not sufficient to estimate tetrachloroethylene intake from soil. 
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The National Occupational Exposure Survey (NOES), conducted by NIOSH from 1981 to 1983, 

estimated that 688,110 workers employed at 49,025 plant sites were potentially exposed to 

tetrachloroethylene in the United States during this period (NOES 1990).  The NOES database does not 

contain information on the frequency, concentration, or duration of exposure; the survey provides only 

estimates of workers potentially exposed to chemicals in the workplace. 

6.6  EXPOSURES OF CHILDREN 

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways.  

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume.  A child’s diet often differs from that of adults.  

The developing human’s source of nutrition changes with age:  from placental nourishment to breast milk 

or formula to the diet of older children who eat more of certain types of foods than adults.  A child’s 

behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their mouths, 

sometimes eat inappropriate things (such as dirt or paint chips), and spend more time outdoors.  Children 

also are closer to the ground, and they do not use the judgment of adults to avoid hazards (NRC 1993). 

In addition to breathing air or consuming contaminated water, infants can also be exposed to 

tetrachloroethylene in breast milk.  Tetrachloroethylene was present at unspecified levels in seven of eight 

samples of mother's milk from four urban areas in the United States (Pellizzari et al. 1982).  A woman in 

Halifax, Nova Scotia, who visited her husband daily at the dry cleaning plant where he worked, was 

found to have tetrachloroethylene present in her breast milk (Bagnell and Ellenberger 1977).  This was 

discovered after her breast-fed infant developed obstructive jaundice, which was attributed to the 

contaminant.  Using a PBPK model, Schreiber (1993) predicted that for women exposed under 

occupational conditions, breast milk concentrations would range from 857 to 8,440 μg/L.  The exposure 

scenarios for the low concentrations were 8 hours at about 6 ppm (exposure concentration of counter 

workers, pressers, and seamstresses) and 16 hours at 0.004 ppm (residential background), and for the high 

concentration, exposure scenarios were 8 hours at 50 ppm and 16 hours at 0.004 ppm (residential 

background).  Assuming that a 7.2-kg infant ingests 700 mL of breast milk/day, the infant dose would 

range from 0.08 to 0.82 mg/kg/day.  The infant dose estimated from background exposure (24 hours at 
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0.004 ppm) was 0.001 mg/kg/day (Schreiber 1993).  Because of potential widespread exposure, the study 

author suggested that additional monitoring of breast milk levels should be completed.  A second model 

of the lactational transfer of tetrachloroethylene has been developed using data from rats (Byczkowski 

and Fisher 1994, 1995).  Using an exposure scenario similar to that described by Bagnell and Ellenberger 

(1977), investigators (Byczkowski and Fisher 1994) estimated that a 1-hour exposure to 600 ppm 

tetrachloroethylene each day would result in an infant blood concentration of about 0.035 mg/L within 

1 month of exposure.  Using the same exposure scenarios as Schreiber (1993), the Byczkowski and Fisher 

(1995) model predicts slightly smaller doses delivered to the infant.  For example, Schreiber (1993) 

predicted 0.08 mg/kg/day as the minimum dose to the infant for the exposure scenario for low 

concentrations (8 hours at 6 ppm, 16 hours at 0.004 ppm), while Byczkowski and Fisher (1995) predicted 

a dose of 0.032 mg/kg/day.  The Schreiber (1993) model may have overestimated the dose to the infant 

because it assumes that the infant will be exposed to the peak concentrations of tetrachloroethylene in 

breast milk, while the Byczkowski and Fisher (1995) model provides more insight into the changing 

concentrations of tetrachloroethylene in breast milk as maternal exposure changes. 

6.7  POPULATIONS WITH POTENTIALLY HIGH EXPOSURES 

Various segments of the population can be exposed to levels of tetrachloroethylene significantly above 

normal background concentrations.  Metal degreasers who use the chemical as a solvent would be 

expected to have high exposure.  People working in the dry cleaning industries are exposed to elevated 

levels of tetrachloroethylene.  In addition, evidence suggests that people living with workers in the dry 

cleaning industry may be subjected to higher exposures, even if their homes are far removed from the 

work site (Aggazzotti et al. 1994a); 30 such homes surveyed showed a range of indoor 

tetrachloroethylene levels of 34–3,000 μg/m3 (5.0–442 ppb), which was significantly higher than that 

found in control homes (1–16 μg/m3 or 0.1–2.4 ppb).  The tetrachloroethylene levels in alveolar air 

samples were likewise significantly higher in family members of workers than in control subjects, and the 

higher exposures were attributed to clothing worn home from work and the expired breath of workers 

(Aggazzotti et al. 1994a, 1994b). 

Service members and their families stationed at the Camp Lejeune Marine Corps Base, North Carolina 

were exposed to high levels of tetrachloroethylene and other VOCs from bathing in and consuming 

contaminated water (Agency for Toxic Substances and Disease Registry 2013). 
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Residents living in apartment buildings in New York City also housing dry cleaners were exposed to 

higher levels of tetrachloroethylene (indoor air level of 27.5 µg/m3), as compared to residents living in 

buildings without a dry cleaner (2.3 µg/m3) (Storm et al. 2013).  When the residents were categorized by 

minority status, the mean level of tetrachloroethylene in the indoor air was 82.5 µg/m3 in the minorities 

living in apartments buildings with dry cleaners, compared to 16.5 µg/m3 in non-minority households 

living in the buildings with dry cleaners.  No differences in indoor air levels were found between minority 

and non-minority residents living in buildings without dry cleaners. Mean indoor tetrachloroethylene air 

levels were also higher in low income family homes in buildings with dry cleaners (105.5 µg/m3) 

compared to high income family homes in buildings with dry cleaners (17.8 µg/m3).  Likewise, mean 

blood tetrachloroethylene levels in residents living in apartment buildings with dry cleaners were 

0.27 ng/mL in minority children and 0.46 ng/mL in minority adults, while mean blood levels were 

0.12 ng/mL in non-minority children and 0.15 ng/mL in non-minority adults. The same trend was 

observed in low income children and adults, where mean blood levels were 3 and 4 times higher than the 

levels of the high income children and adults. The study shows that residents living in buildings with co-

located dry cleaners in minority, low-income areas have higher exposures to tetrachloroethylene than 

residents living in buildings with co-located dry cleaners in non-minority high income areas (Storm et al. 

2013). 

Similarly, 37.1–62.6% of blood samples were above the detection limits for tetrachloroethylene in a 

School Health Imitative:  Environment, Learning, Disease (SHIELD) study of children attending schools 

in minority neighborhoods in Minneapolis, Minnesota (Sexton et al. 2005).  Exposure was due to multiple 

media including air, water, soil, dust, food, beverages, and consumer products.  Blood levels ranged from 

0.02 to 0.82 ng/mL and were generally ≥2 times lower when compared to concentrations in nonsmoking 

and smoking adults from the NHANES III study. 

Elevated levels of tetrachloroethylene in human breath of the general public (i.e., non-occupational 

exposure) appear to be related to tetrachloroethylene emissions from nearby factories or from chemical 

waste dumps.  A sample of six children living near a factory in the Netherlands had a mean concentration 

of 24 μg/m3 (3.5 ppb) tetrachloroethylene in their breath, compared with 11 control children with a mean 

level of 2.8 μg/m3 (0.4 ppb) (Monster and Smolders 1984).  Nine residents of Love Canal, New York, a 

site of serious chemical contamination for many years, were found to have tetrachloroethylene levels 

ranging from 600 to 4,500 ng/m3 (0.09–0.66 ppb) in their breath, from 0.35 to 260 ng/mL (0.35–260 ppb) 

in their blood, and from 120 to 690 ng/mL (120–690 ppb) in their urine (Barkley et al. 1980).  This same 
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study indicated that the participants were exposed to 120–14,000 ng/m3 (0.02–2.06 ppb) in ambient 

outside air and levels of 350–2,900 ng/L (0.35–2.90 ppb) in their drinking water. 

Because of its pervasiveness in the environment, the general public can be exposed to tetrachloroethylene 

through drinking water, air, or food, although the levels of exposure are probably far below those causing 

any adverse effects.  Concern may be justified, however, for people who are continuously exposed to 

elevated levels, such as residents of some urban or industrialized areas, people living near hazardous 

waste sites, or people exposed at work.  Short-term exposure to high levels of tetrachloroethylene may 

also pose risks to people using products containing the chemical in areas with inadequate ventilation.  The 

discontinuation of tetrachloroethylene use in many medical applications and some consumer products has 

generally decreased the exposure risks in these situations. 

An EPA TEAM (Total Exposure Assessment Methodology) study conducted in New Jersey attempted to 

identify factors associated with risk of higher inhalation of tetrachloroethylene (Wallace et al. 1986b).  

The following factors (in order of importance) were identified: employment (not otherwise specified), 

wood processing, visiting a dry cleaner, working at a textile plant, using pesticides, and working at or 

being in a paint store. 

6.8  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of tetrachloroethylene is available. Where adequate 

information is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a 

program of research designed to determine the health effects (and techniques for developing methods to 

determine such health effects) of tetrachloroethylene. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 
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6.8.1 Identification of Data Needs 

Physical and Chemical Properties. The physical and chemical properties of tetrachloroethylene 

are well characterized and allow prediction of the environmental fate of the compound (HSDB 2013; Lide 

2008).  Estimates of the distribution of tetrachloroethylene in the environment based on available 

constants (e.g., water solubility, log Kow, log Koc, vapor pressure) (HSDB 2013; Seip et al. 1986) are 

generally in good agreement with experimentally determined values. Carpet is a source of 

tetrachloroethylene in the indoor air (Won et al. 2000).  Additional information on tetrachloroethylene 

partitioning between indoor air and building materials is needed, as well as information on the sorption 

kinetics for those materials. 

Production, Import/Export, Use, Release, and Disposal. According to the Emergency 

Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required 

to submit substance release and off-site transfer information to the EPA.  The TRI, which contains this 

information for 2011, became available in November of 2012. This database is updated yearly and should 

provide a list of industrial production facilities and emissions. 

Humans are at risk of exposure to tetrachloroethylene because of its widespread use and distribution in 

the environment.  Production, import, and use of the chemical are known to be relatively high.  

Tetrachloroethylene is released to the atmosphere mainly through its use in the dry cleaning and textile 

processing industries, as a chemical intermediate, and in degreasing procedures (Dow 2008; HSDB 2013).  

It is also released to surface water and land in sewage sludges and industrial liquid or solid waste (Schultz 

and Kjeldsen 1986; Weant and McCormick 1984).  Tetrachloroethylene-containing material is considered 

a hazardous waste and its disposal is subject to regulations (EPA 2007). More current data on production, 

use in food processing and consumer products, releases, efficiency of disposal practices, adequacy of 

current disposal regulations, and the extent of recovery and recycling of tetrachloroethylene would assist 

in estimating human potential exposures, particularly of populations living near industrial facilities and 

hazardous waste sites. 

Environmental Fate. Tetrachloroethylene partitions primarily to the atmosphere (Class and 

Ballschmiter 1986), where it can be transported back to land and surface water in rain (Pearson and 

McConnell 1975; Su and Goldberg 1976).  In air, the half-life of tetrachloroethylene has been estimated 

to range from 70 to 251 days (Class and Ballschmiter 1986; Cupitt 1987).  Tetrachloroethylene can be 

biodegraded under the appropriate conditions in soil (Cabirol et al. 1996, 1998; Chang et al. 1998, 2011; 
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Isalou et al. 1998; Kim et al. 2010; Krumholz et al. 1996) and groundwater (Cichocka et al. 2010; 

Hunkeler et al. 1999; Sharma and McCarty 1996,).  However, the non-aqueous phase is quite difficult to 

treat and as a result, tetrachloroethylene persists at many hazardous waste sites (Chilton et al. 1990; Doust 

and Huang 1992).  Vapor-phase tetrachloroethylene can migrate up from contaminated water or soil to 

above ground inside a home or building through vapor intrusion (Agency for Toxic Substances and 

Disease Registry 2006; Forand et al. 2012; Johnston and Gibson 2013; NYYSDH 2006).  More studies 

are needed to investigate the environmental fate of subsurface tetrachloroethylene, especially with regard 

to vapor intrusion.  The hydrolysis half-life has been estimated to be from 9 months (Dilling et al. 1975) 

to 9.9x108 years (Jeffers et al. 1989).  Because of the great variability in half-life, additional studies 

regarding the hydrolysis of tetrachloroethylene would be useful.  

Bioavailability from Environmental Media. No studies have been identified regarding the 

absorption of tetrachloroethylene following ingestion of contaminated soil and plants grown on 

contaminated soil near hazardous waste sites and other point sources of pollution.  Tetrachloroethylene 

can be absorbed following inhalation (Hake and Stewart 1977; Monster et al. 1979), oral (Frantz and 

Watanabe 1983; Pegg et al. 1979; Schumann et al. 1980), or dermal exposure (Jakobson et al. 1982; 

Stewart and Dodd 1964; Tsuruta 1975).  All of these routes of exposure may be of concern to humans 

because of the potential for tetrachloroethylene to contaminate the air, drinking water, food, and soil. 

More information on the absorption of tetrachloroethylene following ingestion of contaminated soil and 

plants grown on contaminated soil near hazardous waste sites and other sources of pollution would be 

helpful in determining the bioavailability of the chemical from soil. 

Food Chain Bioaccumulation. Data indicate that tetrachloroethylene has a low bioconcentration 

potential in aquatic organisms, animals and plants (Barrows et al. 1990; Kawasaki 1980; Kenaga 1980; 

Neely et al. 1974; Polder et al. 1998; Saisho et al. 1994; Veith et al. 1980).  Although biomagnification of 

tetrachloroethylene in terrestrial and aquatic food chains is not expected to be important because the 

compound is metabolized in animals, experimental data to confirm the expected behavior would be useful 

in evaluating the importance of food chain bioaccumulation as a source of human exposure to 

tetrachloroethylene. 

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of 

tetrachloroethylene in contaminated media at hazardous waste sites are needed so that the information 

obtained on levels of tetrachloroethylene in the environment can be used in combination with the known 
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body burden of tetrachloroethylene to assess the potential risk of adverse health effects in populations 

living in the vicinity of hazardous waste sites. 

Tetrachloroethylene is widely distributed in the environment and has been detected in air (Adgate et al. 

2004; Aggozzotti et al. 1994a; Roda et al. 2013), water (Dykson and Hess 1982; Lee et al. 2002; Rao and 

Brown et al. 1993; Ligocki et al. 1985; Rowe et al. 2007; Williams et al. 2002), soil (Vroblesky et al. 

1991), and food (Daft 1989; Entz and Diachenko 1988; Entz and Hollifield 1982; Grob et al. 1990; 

Heikes and Hopper 1986).  Tetrachloroethylene was found to be present in lettuce, and is prevalent in 

other fruits and vegetables (Boekhold et al. 1989; de Raat 2003).  Additional data on the occurrence of 

tetrachloroethylene in foods would be important in understanding how the compound contaminates the 

food.  

Ambient air levels in cities in the United States generally range from 0.035 to 1.3 ppb (Hartwell et al. 

1987).  Continual monitoring data for surface air, water, groundwater, and soil are needed to assess the 

current potential for exposure to the chemical from these media.  Additional data characterizing the 

concentration of tetrachloroethylene in air, water, and soil surrounding hazardous waste sites and 

estimating human intake from these media would be helpful in assessing the potential human exposure to 

this chemical for populations living near hazardous waste sites. 

Exposure Levels in Humans. Tetrachloroethylene has been detected in human breath (Aggazzotti 

et al. 1994b; Koppel et al. 1985; Stewart et al. 1977), blood (Altmann et al. 1990; Brugnone et al. 1994; 

Hattis et al. 1993; Skender et al. 1994), urine (Koppel et al. 1985; Rutkiewicz et al. 2011), tissues 

(Garnier et al. 1996; Levine et al. 1981; Lukaszewski 1979), and breast milk (Bagnell and Ellenberger 

1977).  Most of the monitoring data come from occupational studies of specific worker populations 

exposed to tetrachloroethylene (McKernan et al. 2008; Raisanen et al. 2002); however, some studies of 

exposure in the general population have been done (CDC 2012; Chiappini et al. 2009; Garetano and 

Gochfeld 2000; Roda et al. 2013; Zocollio et al. 2009).  Because infants may be more susceptible to 

tetrachloroethylene, more information on tetrachloroethylene in breast milk would be useful.  Data 

correlating levels in biological samples with media exposure levels and the subsequent development of 

health effects are especially needed for populations living in the vicinity of hazardous waste sites. There 

are data that suggest that levels of tetrachloroethylene among minorities who live in buildings with a dry 

cleaner are higher than non-minority levels (Storm et al. 2013); however, there is a need for more studies 

that focus on minority populations and their exposure to tetrachloroethylene. 
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This information is necessary for assessing the need to conduct health studies on these populations. 

Exposures of Children. Limited data are available regarding the exposures of children to 

tetrachloroethylene. Tetrachloroethylene was present at unspecified levels in breast milk samples 

(Bagnell and Ellenberger 1977; Pellizzari et al. 1982). Using a PBPK model, Schreiber (1993) predicted 

that for women exposed under occupational conditions, breast milk concentrations would range from 

857 to 8,440 μg/L.  Using an exposure scenario similar to that described by Bagnell and Ellenberger 

(1977), other investigators (Byczkowski and Fisher 1994) estimated that a 1-hour exposure to 600 ppm 

tetrachloroethylene each day would result in an infant blood concentration of about 0.035 mg/L within 

1 month of exposure.  Additional information regarding the levels of tetrachloroethylene in these and 

other matrices, such as tissue, neonatal blood, cord blood, and meconium fluid, would be helpful in 

assessing the exposure of children to this substance. 

Child health data needed to inform age-related susceptibility are discussed in Section 3.12.2, 

Identification of Data Needs: Children’s Susceptibility. 

Exposure Registries. No exposure registries for tetrachloroethylene were located.  This substance is 

not currently one of the compounds for which a sub-registry has been established in the National 

Exposure Registry.  The substance will be considered in the future when chemical selection is made for 

sub-registries to be established. The information that is amassed in the National Exposure Registry 

facilitates the epidemiological research needed to assess adverse health outcomes that may be related to 

exposure to this substance. 

6.8.2 Ongoing Studies 

Ongoing studies pertaining to tetrachloroethylene have been identified and are shown in Table 6-5. 
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Table 6-5.  Ongoing Studies on Tetrachloroethylene 

Principal 
Investigator Study topic Institution Sponsor 
Vaidya, B Development of a field 

deployable vapor intrusion 
monitor for VOCs such as 
tetrachloroethylene 

Lynntech, Inc., College 
Station, Texas 

National Institute of 
Environmental Health 
Sciences 

Leen, JB Development of a laser-based 
spectrometer for real-time 
monitoring of VOCs (including 
tetrachloroethylene) at 
superfund sites 

Los Gatos Research, 
Mountain View, 
California 

National Institute of 
Environmental Health 
Sciences 

VOC = volatile organic compound 

Source: RePORTER 2013 
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7. ANALYTICAL METHODS 

The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring tetrachloroethylene, its metabolites, and other biomarkers of exposure and 

effect to tetrachloroethylene.  The intent is not to provide an exhaustive list of analytical methods. 

Rather, the intention is to identify well-established methods that are used as the standard methods of 

analysis.  Many of the analytical methods used for environmental samples are the methods approved by 

federal agencies and organizations such as EPA and the National Institute for Occupational Safety and 

Health (NIOSH).  Other methods presented in this chapter are those that are approved by groups such as 

the Association of Official Analytical Chemists (AOAC) and the American Public Health Association 

(APHA).  Additionally, analytical methods are included that modify previously used methods to obtain 

lower detection limits and/or to improve accuracy and precision. 

7.1  BIOLOGICAL MATERIALS 

Several methods are available for the analysis of tetrachloroethylene in biological media.  The method of 

choice depends on the nature of the sample matrix; required precision, accuracy, and detection limit; cost 

of analysis; and turnaround time of the method.  Since tetrachloroethylene is metabolized in the human 

body to trichloroacetic acid, trichloroacetic acid may be quantified in blood and urine as an indirect 

measure of tetrachloroethylene exposure (Monster et al. 1983).  It should be pointed out that the 

determination of trichloroacetic acid may not provide unambiguous proof of tetrachloroethylene exposure 

since it is also a metabolite of trichloroethylene.  Trichloroethanol has also been thought to be a 

metabolite of tetrachloroethylene, identified following occupational exposure (Birner et al. 1996; Ikeda et 

al. 1972; Monster et al. 1983).  However, rather than being a metabolite of tetrachloroethylene, it is more 

likely that trichloroethanol is formed from trichloroethylene, which is often found as a contaminant of 

tetrachloroethylene (Skender et al. 1991).  Methods for the determination of trichloroethylene and 

trichloroethanol are summarized in the Toxicological Profile for Trichloroethylene (Agency for Toxic 

Substances and Disease Registry 1997). 

The main method used to analyze for the presence of tetrachloroethylene and trichloroacetic acid in 

biological samples is separation by gas chromatography (GC) combined with detection by mass 

spectrometry (MS) or an electron capture detector (ECD). Tetrachloroethylene and/or its metabolites 

have been detected in exhaled air, blood, urine, breast milk, and tissues.  Preconcentration techniques are 

frequently used in tetrachloroethylene analysis.  Preconcentration not only increases the sensitivity, but in 

certain instances, may also decrease the sample separation time.  Interference in tetrachloroethylene 
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analysis results from the widespread distribution of volatile organic compounds in the environment.  The 

most likely sources of these interfering compounds are contamination from the vessels used to hold and 

prepare samples, contamination of the plumbing in the analytical instrument, and leaking of 

environmental contaminants into the sample vessel.  Details on sample preparation, analytical method, 

and sensitivity and accuracy of selected methods are shown in Table 7-1. 

Breath samples have been analyzed for tetrachloroethylene in several studies.  Preconcentration on a solid 

sorbent followed by thermal desorption onto a cryogenic trap connected to the gas chromatograph was 

used to analyze exhaled air in several TEAM studies (Wallace 1986; Wallace et al. 1986a, 1986b, 1986c, 

1986d).  Vapors were thermally released directly onto the chromatographic column for separation and 

detection by electron impact MS (EIMS). 

The methods most frequently used to determine the presence of tetrachloroethylene in biological tissues 

and fluids are headspace analysis and purge-and-trap, followed by GC/MS or GC/ECD.  In headspace 

analysis, the gaseous layer above the sample is injected into the gas chromatograph.  Samples may be 

hydrolyzed prior to analysis of headspace gases (Ramsey and Flanagan 1982).  Headspace gases can be 

preconcentrated prior to GC analysis (Cramer et al. 1988; Michael et al. 1980) or injected directly into the 

gas chromatograph (Ramsey and Flanagan 1982).  Sensitivity is in the low-ppb range, with generally 

good precision and accuracy for blood, serum, plasma, and urine (Cramer et al. 1988; Michael et al. 

1980).  The purge-and-trap method is used with liquid samples and involves purging the sample with an 

inert gas and trapping the purged volatiles on a solid sorbent.  Blood and breast milk have been analyzed 

for tetrachloroethylene by purging onto a solid sorbent to concentrate the volatiles, followed by thermal 

desorption and analysis by GC/MS (Antoine et al. 1986; Pellizzari et al. 1982).  However, the breast milk 

analysis was only qualitative, and recoveries appeared to be low for those chemicals analyzed (Pellizzari 

et al. 1982).  Precision and sensitivity were comparable to headspace analysis, but accuracy was lower. 

Recovery of tetrachloroethylene from rat tissues was found to be greater when the tissues were 

homogenized in saline:isooctane (1:4) rather than saline alone (Chen et al. 1993). 

Analysis of blood and urine for trichloroacetic acid has been done primarily by GC/ECD (Ziglio et al. 

1984).  Trichloroacetic acid has also been determined colorimetrically by decarboxylation to chloroform 

and conjugation with pyridine (Pekari and Aitio 1985a).  The recovery and precision for this method were 

good, but the sensitivity was about a tenth that of GC/ECD methods (Christensen et al. 1988; Pekari and 

Aitio 1985a). 
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Table 7-1. Analytical Methods for Determining Tetrachloroethylene in Biological  
Materials  

Sample 
Analytical detection Percent 

Sample matrix Preparation method method limit recovery Reference 
Exhaled air Collected in spirometer; pre- HRGC/MS 0.3 ppb 95–99 Wallace et 

concentrated on Tenax-GC; al. 1986a, 
thermally desorbed 1986d 

Blood Thermally decarboxylated; GC/ECD (for 2 ppb 101–109 Ziglio et al. 
subjected to static head- metabolite 1984 
space analysis TCA) 

Blood Antifoam agent added; GC/MS 0.5 ppb Not reported Antoine et 
purged and trapped on al. 1986 
Tenax-GC/silica gel; 
thermally desorbed 

Blood Sealed in gas-tight vial; GC/PID, 68 ng/L Not reported Schroers et 
heated, subjected to static ECD, and (GC/PID), al. 1998 
head-space analysis FID less than 

the 
detection 
limit (ECD), 
and 
35 ng/L 
(FID)0.005– 
0.0012 µg/L 

Blood Stored in vacutainers at 4 °C GC-MS Not reported Blount et al. 
in the dark, transferred to 2006 
SPME vial, and subjected to 
SPME headspace analysis 

Blood, plasma, Sample in sealed vial GC/ECD 100 ppb Not reported Ramsey and 
and serum subjected to static head- Flanagan 

space analysis 1982 
Blood, urine, Passed inert gas over head- HRGC/MS Not reported 100 (blood); Michael et 
and adipose space of sample and 72 (urine); al. 1980 
tissue trapped on Tenax-GC; 52 (adipose 

thermally desorbed tissue) 
Urine Thermally decarboxylated; Spectro- <0.8 ppm 93.5 Pekari and 

reacted with pyridine photometry Aitio 1985a 
(for 
metabolite 
TCA) 

Urine Enzyme hydrolysis of GC/ECD (for 20 ppb 98 Christensen 
sample; decarboxylation of metabolite et al. 1988 
trichloroacetic acid; head- TCA) 
space gas analyzed 
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Table 7-1. Analytical Methods for Determining Tetrachloroethylene in Biological  
Materials  

Sample 
Analytical detection Percent 

Sample matrix Preparation method method limit recovery Reference 
Urine	 Hydrolyzed with H2SO4; 

extracted with isooctane 

Urine	 Stored in vacutainers, 
subjected to SPME 
headspace analysis 

Tissue	 Mixed with a proteolytic 
enzyme; incubated at 65C; 
head-space gas analyzed 

Tissue	 Homogenization in saline; 
extraction into isooctane; or 
direct homogenization into 
saline:isooctane; head-
space gas analyzed 

Human milk	 Purged warm; trapped in 
Tenax-GC; thermally 
desorbed 

GC/ECD (for 
metabolite 
trichloro-
ethylene) 
GC-MS 

GC/ECD 

GC 

HRGC/MS 

75 ppb 

0.005 µg/L 

NR 

1 ng 

Qualitative 
identification 

98.2	 Pekari and 
Aitio 1985b 

Not reported	 Poli et al. 
2005 

100	 Ramsey and 
Flanagan 
1982 

Saline Chen et al.  
homogenization, 1993  
69–105;  
isooctane  
homogenization,  
81–99  
Not reported	 Pellizzari et 

al. 1982 
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ECD = electron capture detector; FID = flame ionization detector; GC = gas chromatography; HRGC = high 
resolution gas chromatography; H2SO4 = sulfuric acid; MS = mass spectrometry; PID = photoionization detector; 
SPME = solid-phase microextraction; TCA = trichloroacetic acid 
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7. ANALYTICAL METHODS 

Static headspace capillary GC with serial triple detection is also a sensitive and reliable method for the 

determination of tetrachloroethylene in blood.  Tetrachloroethylene is able to be separated out easily due 

to its volatility by headspace techniques. The detection limits for the photoionization detector (PID), 

ECD, and flame ionization detector (FID) were 68 ng/L, less than the detection limit, and 35 ng/L, 

respectively (Schroers et al. 1998). 

Novel methods of detecting tetrachloroethylene in biological samples have been developed recently. 

Headspace solid-phase microextraction (SPME) GC-MS was utilized to effectively determine the 

concentration of tetrachloroethylene in exposed (0.58 µg/L) and non-exposed individuals (0.11 µg/L).  

Detection limits were 0.005 µg/L (Poli et al. 2005) and 0.005–0.12 µg/L (Blount et al. 2006). 

7.2  ENVIRONMENTAL SAMPLES 

Analysis of environmental samples is similar to that of biological samples. The most common methods 

of analyses are GC coupled to MS, ECD, a Hall's electrolytic conductivity detector (HECD), or a FID. 

Preconcentration of samples is usually done by sorption on a solid sorbent for air and by the purge-and-

trap method for liquid and solid matrices.  Alternatively, headspace above liquid and solid samples may 

be analyzed without preconcentration.  Details of commonly used analytical methods for several types of 

environmental samples are presented in Table 7-2. 

The primary methods of analyzing for tetrachloroethylene in air are GC combined with either MS or 

ECD.  Air samples are collected on a solid sorbent, thermally desorbed to an on-column cryogenic trap 

and heat-released from the trapping column directly to the gas chromatograph (Bayer and Black 1987; 

EPA 1999a; EPA 1999b; Krost et al. 1982; Wallace 1986; Wallace et al. 1986a, 1986b, 1986c, 1986d).  

Grab-samples of air can also be obtained and preconcentrated on a cryogenic column (Makide et al. 1979; 

Rasmussen et al. 1977). EPA Method TO-15 (EPA 1999a) and Method TO-17 (EPA 1999b) are 

identical, except that Method TO-17 uses an alternative sampling technique (direct sampling to solid 

sorbent tubes) rather than the collection in specially prepared stainless steel canisters followed by 

concentration using a solid sorbent and then thermal desorption.  The limit of detection for cryogenic 

trapping followed by GC/ECD or GC/MS is in the low-ppt range (Krost et al. 1982; Makide et al. 1979; 

Rasmussen et al. 1977; Wallace et al. 1986a, 1986d).  With careful technique, precision for both GC/ECD 

and GC/MS is acceptable, although the relative standard deviation (RSD) can be as high as ±28% (Krost 

et al. 1982; Rasmussen et al. 1977; Wallace et al. 1986a, 1986b, 1986c, 1986d). 
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Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Air	 Absorbed on coconut GC/FID 0.4 mg/sample 96 NIOSH 1984a 

charcoal; desorbed with (NIOSH 
carbon disulfide Method 

1003) 
Air Air is collected in 

specially-prepared 
stainless steel 
canisters, concentrated 
on a solid sorbent and 
then thermally 
desorbed 

Air Collected in stainless 
steel canister; 
preconcentrated in 
cooled adsorbent; 
thermally desorbed 

Air Adsorbed on Tenax-GC 
thermally desorbed to 
on-column cold trap; 
heat-released 

Air Collected in stainless 
steel canister; 
preconcentrated by 
cryogenic trapping; 
thermally desorbed 

Air Adsorbed on Tenax-
GC; thermally desorbed 
to on-column cold trap; 
heat-released 

Air Collected in stainless 
steel canister 
(SUMMA); cryogenic 
preconcentration on 
glass beads 

Air Collected by passive 
samplers, desorbed 
with carbon disulfide 

Air Air samples collected 
directly to a solid 
sorbent tube followed 
by thermal desorption 

GC/MS 0.1–0.75 ppb 
(EPA 
Method 
TO-15) 

GC/ECD 1 ppt 

HRGC/MS 1.9 ppt 

GC/ECD 0.3 ppt 

HRGC/MS 0.3 ppt 

Full scan 0.5 ppb 
GC/MS 
(proposed 
EPA 
Method 
TO-14) 
GC/ECD 0.1 µg/m3 

GC/MS 0.1–0.75 ppb 
(EPA 
Method 
TO-17) 

90–110 

Not 
reported 

Not 
reported 

Not 
reported 

95–99 

Not 
reported 

102±2 

90–110 

EPA 1999a 

Makide et al. 1979 

Krost et al. 1982 

Rasmussen et al. 
1977 

Wallace et al. 1986a 

Hoyt and Smith 1991 

Begerow et al. 1996 

EPA 1999b 
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7. ANALYTICAL METHODS 

Table 7-2. Analytical Methods for Determining Tetrachloroethylene in  
Environmental Samples  

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Water Purged and trapped in GC/PI 0.01–0.05 ppb 97 APHA 1992 

methyl silicone,
216-diphenylene oxide 

(EPA 
503.1) 

polymer silica gel; 
thermally desorbed 

Water Purged and trapped on GC/MS 1.9 ppb 101 EPA 1982b 
coconut charcoal/ (EPA 
Tenax/silica gel; Method 
thermally desorbed 624) 

Water Purged and trapped on GC/HSD 0.12 ppb 106 EPA 1982b 
coconut charcoal/ (EPA 
Tenax/silica gel; Method 
thermally desorbed 601) 

Water Equilibrated in sealed GC/ECD Not reported 105 Dietz and Singley 
vial at room 1979 
temperature; head-
space gas injection 

Water Purged and trapped on GC/HECD; <0.1 ppb 98 Otson and W illiams 
Tenax-GC; thermally (HECD); (HECD); 1982 
desorbed GC/FID 0.1 (FID) 79 (FID) 

Water Purged and trapped on GC/HECD Not reported 50B90 Wallace et al. 1986a, 
Tenax-GC; thermally 1986d 
desorbed 

Water Sample directly injected GC/UV 1 ppb 39 Motwani et al. 1986 
Water In situ method; FEW S/FT- 1 ppm Not Krska et al. 1993 

concentration in LDPE IR reported 
coating 

Water Spray extraction; 
trapped in sorption 

GC/MS 10–30 ng/L Not 
reported 

Baykut and Voigt 
1992 

tube; thermally 
desorbed 

Landfill 
leachate 

Extract with pentane; 
analyze 

GC/MS Not reported Not 
reported 

Schultz and Kjeldsen 
1986 

Liquid and Equilibrated in sealed GC/HSD 0.03 ppb 106 EPA 1982c 
solid via headspace gas (EPA 
waste injected Method 

8010) 
Building Collected by adsorption HRGC/MS 0.3 ppt Not Wallace et al. 1987 
materials onto sorbent; thermally reported 
and desorbed 
consumer 
productsa 
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7. ANALYTICAL METHODS 

Table 7-2. Analytical Methods for Determining Tetrachloroethylene in  
Environmental Samples  

Sample 
matrix Preparation method 

Analytical 
method 

Sample 
detection limit 

Percent 
recovery Reference 

Soil Collected in headspace 
vials, spiked with EPA-
certified standard 

GC/MS 2 ng/g Not 
reported 

James and Stack 
1996 

solvents, analysis by 
SPME 

Sediment Spiked samples 
transferred to 
headspace analyzer 

GC/MS 
(SIM mode) 

0.2 ng/g 50.4–53.5 Kawata et al. 1997 

Food Undigested or H2SO4 -
digested samples at 
90°C subjected to static 
head-space analysis 

HRGC/ 
ECD; 
GC/MS 

0.23 ppb 90–100 Entz and Hollifield 
1982 

Food Extraction with 
isooctane; clean-up on 
Florisil column if 

GC/ECD; 
GC/HECD 

6 ppb (ECD); 
13 ppb (HECD) 

>50 Daft 1988 

needed 
Olive oil Add Dekalin to vial with 

olive oil; seal vial; 
GC/ECD 0.02 mg/kg Not 

reported 
Pocklington 1992 

incubate at 70°C for 
60 minutes; inject 
sample of head-space 
gas 

Grains, 
grain-
based 

Purged and trapped on 
Tenax/XAD-4 resin; 
desorb with hexane 

GC/ECD Low- to sub-ppb 86–100 Heikes and Hopper 
1986 

foods 

aSample is air from an environmental chamber containing the building material or consumer product. 

ECD = electron capture detector; EPA = Environmental Protection Agency; FEWS = fiber evanescent wave 
spectroscopy; FID = flame ionization detection; FT-IR = Fourier transform infrared; GC = gas chromatography; 
HECD = Hall electrolytic conductivity detector; HRGC = high resolution gas chromatography; HSD = halide-sensitive 
detector; H2SO4 = sulfuric acid; LDPE = low-density polyethylene; MS = mass spectrometry; NIOSH = National 
Institute for Occupational Safety and Health; PI = photoionization; SIM = selected ion monitoring; SPME = solid-
phase microextraction; UV = ultraviolet detection 
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7. ANALYTICAL METHODS 

The detection of tetrachloroethylene in air also was done also with dual column capillary GC with tandem 

ECD/FID.  Detection limits were 0.01 µg/m3 and retention times were from 18.56 to 19.24 minutes.  

Recovery of tetrachloroethylene was 102% (±2 standard deviation) (Begerow et al. 1996).  

An alternate method of analysis chemically desorbs tetrachloroethylene from activated coconut charcoal 

and directly injects the extract into a GC equipped with FID detection (NIOSH 1994b; Peers 1985).  The 

sensitivity of this method is only in the low-ppm range. 

Tetrachloroethylene can be detected in drinking water, groundwater, waste water, and leachate from solid 

waste. The primary analytical methods are separation by GC combined with detection by HECD or other 

type of halogen-specific detector, ECD, or MS.  In most methods, tetrachloroethylene is liberated from 

the liquid matrix by purging with an inert gas concentrated by trapping on a suitable solid sorbent and 

thermally desorbed onto the gas chromatograph column.  Baykut and Voigt (1992) describe a method in 

which tetrachloroethylene is removed from aqueous solutions using a spray extraction technique, 

followed by trapping on a solid sorbent, then thermal desorption onto a gas chromatograph.  Detection of 

tetrachloroethylene is generally by HECD (or other halogen-specific detector) or MS (APHA 1992; 

Baykut and Voigt 1992; EPA 1982b, 1982c; Otson and Williams 1982; Wallace 1986; Wallace et al. 

1986c, 1986d). The limit of detection is in the sub-ppb range for halogen-specific detectors (APHA 1992; 

EPA 1982b, 1982c) and in the low-ppb for MS (EPA 1982b).  Accuracy is generally >90% (APHA 1992; 

EPA 1982b, 1982c), although lower values have been reported (Wallace 1986; Wallace et al. 1986c, 

1986d).  Precision is ±13% (RSD) or better (APHA 1992; EPA 1982b, 1982c; Wallace 1986, Wallace et 

al. 1986d).  Purging directly to the gas chromatograph with whole-column cryogenic trapping has been 

reported (Pankow and Rosen 1988). The study authors reported excellent purging efficiency (100%) and 

stated that sensitivity and precision should be correspondingly good, although specific values for these 

parameters were not reported.  Headspace analysis has been used to determine tetrachloroethylene in 

water samples.  High accuracy and precision were reported for a procedure in which GC/ECD was the 

analytical method (Dietz and Singely 1979).  Solid waste leachates from sanitary landfills have been 

analyzed for tetrachloroethylene and other volatile organic carbons (Schultz and Kjeldsen 1986). 

Detection limits for the procedure, which involves extraction with pentane followed by GC/MS analysis, 

are in the low-ppb and low-ppm ranges for concentrated and neat samples, respectively.  In addition to the 

GC/MS analysis, liquid chromatography (LC)/MS can be useful in detecting polar, unstable, and heavy 

pollutants.  However, this analysis is not widely used and as such, there are not many LC/MS spectra in 

the literature to make comparisons to (Benfenati et al. 1996). 
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An in situ method for tetrachloroethylene analysis using fiber evanescent wave spectroscopy (FEWS) has 

been described by Krska et al. (1993).  In this method, the water flows through a glass chamber 

containing a silver halide fiber coated with low-density polyethylene in an amorphous phase.  The coating 

serves to concentrate the tetrachloroethylene, and the compound is detected using infrared 

spectrophotometry.  The detection limit of this method, which was validated using headspace GC, was 

1 ppm. 

Purge-trap GC coupled with atomic emission detection is also an effective way to determine 

tetrachloroethylene in the water. 

SPME with GC/MS was used for the determination of tetrachloroethylene in soil landfill site samples.  

The detection limit was 2 ng/g with the retention time of 11.0 minutes (James and Stack 1996).  In 

sediments, headspace analysis with GC/MS was utilized for the determination of tetrachloroethylene. 

Recoveries ranged from 50.4 to 53.5%.  Sensitivity is enhanced even further by increasing concentrations 

of tetrachloroethylene in the headspace gas (Kawata et al. 1997). 

Several procedures for determination of the chemical in plants and food were located.  GC/ECD and 

GC/HSD are most commonly used to analyze solid samples for tetrachloroethylene contamination.  

Extraction, purge-and-trap, and headspace analysis have all been used to prepare samples.  Analysis of 

headspace gases by GC coupled with ECD, MS, or HSD has proven relatively sensitive (low- to sub-ppb 

range) and reproducible for a variety of foods (Entz and Hollifield 1982; EPA 1982c; Pocklington 1992).  

It has also been used to analyze building materials and consumer products (Wallace et al. 1987). 

GC/HSD of headspace gases is the EPA-recommended method for solid matrices (EPA 1982c).  Foods 

have also been analyzed for tetrachloroethylene by GC/ECD/HECD following isooctane extraction. 

Sensitivity was comparable to headspace methods, but reproducibility was not as good (Daft 1988).  In 

both headspace and extraction preparation methods, increased lipid content of the matrix adversely 

affected accuracy and precision.  A purge-and-trap technique proved useful for analyzing grains and 

grain-based foods with high sensitivity and good recovery (Heikes and Hopper 1986). 

7.3  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of tetrachloroethylene is available. Where adequate 
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information is not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a 

program of research designed to determine the health effects (and techniques for developing methods to 

determine such health effects) of tetrachloroethylene. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect. 

Exposure. Methods are available for measuring tetrachloroethylene in breath (Wallace et al. 1986a, 

1986d), blood (Antoine et al. 1986; Michael et al. 1980; Ramsey and Flanagan 1982), urine (Michael et 

al. 1980), and adipose tissue (Chen et al. 1993; Michael et al. 1980; Ramsey and Flanagan 1982), and 

trichloroacetic acid in blood (Ziglio et al. 1984) and urine (Christensen et al. 1988; Pekari and Aitio 

1985a, 1985b).  Available methods are sensitive for measuring exposure levels at which health effects 

have been observed to occur (e.g., in workers known to be exposed to high levels of tetrachloroethylene).  

These methods have also been used to measure background levels in individuals believed not to have 

been exposed to higher-than-expected levels of tetrachloroethylene (e.g., office workers and housewives) 

(Wallace 1986). The methods are generally reliable, although increased precision for most methods 

would increase reliability.  However, tetrachloroethylene is pervasive in the environment and background 

levels for the general population are not well defined.  Levels may vary considerably within the 

environment, making it difficult to differentiate between normal background exposure and excess 

exposure.  Further research on the relationship between levels found in living and working environments 

not suspected of having elevated levels of tetrachloroethylene and levels of the chemical and/or its 

metabolites in biological media would help in better defining background levels of the chemical and aid 

in determining if improved methods of monitoring exposure are needed. 

Effect. There are no unique biomarkers of effect for tetrachloroethylene; however, sensitive and reliable 

clinical methods exist for determining damage to the liver, a target organ for tetrachloroethylene toxicity.  

These include measuring serum levels of liver enzymes, bilirubin, and alkaline phosphatase and urinary 
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urobilinogen (Bagnell and Ellenberger 1977; Coler and Rossmiller 1983; Meckler and Phelps 1966; 

Stewart et al. 1981).  Neurological effects may also result from exposure to tetrachloroethylene 

(Carpenter 1937; Haerer and Udelman 1964; Hake and Stewart 1977; Kendrick 1929; Koppel et al. 1985; 

Morgan 1969; Rowe et al. 1952; Saland 1967; Sandground 1941; Stewart et al. 1970, 1981; Wright et al. 

1937).  Tests for these effects are not especially sensitive, reliable, or specific and would not improve 

detection over the established procedures for measuring tetrachloroethylene in breath, blood, or urine. 

Methods for measuring levels of tetrachloroethylene and its metabolites that might be associated with 

adverse health effects are the same as those for exposure. The methods are sensitive for measuring levels 

of tetrachloroethylene and its metabolites in individuals not exhibiting apparent health effects resulting 

from the chemical (Monster and Smolders 1984; Wallace 1986) as well as in those known to be affected 

by absorption of excessively high levels of tetrachloroethylene.  However, correlations between levels of 

tetrachloroethylene or its metabolites detected in biological media and specific observed effects at lower 

levels of absorption are not well established.  Additional research in this area would allow better 

assessment of existing methods and would help in defining areas in which improvements are needed.  

Improved methods of tissue analysis, giving greater sensitivity and reproducibility, would also help in 

determining the quantitative relationship between the observed toxic effect on specific organs and the 

levels of tetrachloroethylene or its metabolites in these organs. 

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media. Existing methods for determining tetrachloroethylene in air (Krost et al. 1982; Makide et al. 

1979; Rasmussen et al. 1977; Wallace et al. 1986a) and water (APHA 1992; EPA 1982b; Otson and 

Williams 1982), the media of most concern for human exposure, are sensitive, reproducible, and reliable 

for measuring background levels in the environment.  Research investigating the relationship between 

levels measured in air and water and observed health effects could increase our confidence in existing 

methods and/or indicate where improvements are needed.  Methods for solid matrices vary in accuracy 

and precision depending on the method and the matrix (e.g., sludge, soil, sediment, building material).  

Improved methods of detecting tetrachloroethylene in plants and foods, especially those with higher fat 

content, would aid in determining the contribution of tetrachloroethylene exposure from these sources.  

This would be especially important in determining the potential for contamination of populations living 

adjacent to hazardous waste sites and other potential sources of exposure to higher than background levels 

of tetrachloroethylene. 
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7.3.2 Ongoing Studies 

The Environmental Health Laboratory Sciences Division of the National Center for Environmental 

Health, Centers for Disease Control and Prevention, is developing methods for the analysis of 

tetrachloroethylene and other volatile organic compounds in blood.  These methods use purge and trap 

methodology, high-resolution gas chromatography, and magnetic sector mass spectrometry, which give 

detection limits in the low parts per trillion (ppt) range. 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

   
 
 

 
 
 
 

  

 
 

276 TETRACHLOROETHYLENE 

7. ANALYTICAL METHODS 

This page is intentionally blank. 

***DRAFT FOR PUBLIC COMMENT*** 



   
 
 
 
 

 
 
 
 

  

 
 

   

  

   

 

   

    

      

      

   

  

  

   

   

  

 

  

     

   

  

 

  

  

  

   

      

 

   

 

 

 

     

    

277 TETRACHLOROETHYLENE 

8. REGULATIONS, ADVISORIES, AND GUIDELINES  

MRLs are substance specific estimates, which are intended to serve as screening levels, are used by 

ATSDR health assessors and other responders to identify contaminants and potential health effects that 

may be of concern at hazardous waste sites. 

ATSDR has derived a chronic-duration inhalation MRL of 0.006 ppm based on color vision impairment 

in humans chronically exposed to tetrachloroethylene in the workplace at a LOAEL of 7.3 ppm (Cavalleri 

et al. 1994). The LOAEL was converted to an equivalent continuous exposure concentration of 1.7 ppm 

(7.3 ppm × 8/24 hours × 5/7 days) and adjusted using an uncertainty factor of 100 (10 for human 

variability and 10 for use of a LOAEL) and a modifying factor of 3 for database deficiencies (for 

inadequate information on potential low-dose immune system effects). The chronic-duration inhalation 

MRL was adopted as the acute- and intermediate-duration inhalation MRLs.  A chronic-duration oral 

MRL of 0.008 mg/kg/day was derived based on route-to-route extrapolation from the chronic-duration 

inhalation MRL.  The chronic-duration oral MRL was adopted as the acute- and intermediate-duration 

oral MRLs. 

IARC has classified tetrachloroethylene as a Group 2A carcinogen (probably carcinogenic to humans) 

(IARC 2013). The World Health Organization (WHO) has established an air quality guideline value of 

0.25 mg/m3 for tetrachloroethylene as an annual average (WHO 2010) and a drinking water quality 

guideline value of 0.04 mg/L for tetrachloroethylene (WHO 2011). 

OSHA established a permissible exposure limit (PEL) of 100 ppm for tetrachloroethylene (OSHA 

2013b).  OSHA has required employers of workers who are occupationally exposed to tetrachloroethylene 

to institute engineering controls and work practices to reduce and maintain employee exposure at or 

below the PEL.  NIOSH has classified tetrachloroethylene as a potential occupational carcinogen 

(NIOSH 2013) and established an immediately dangerous to life or health (IDLH) value of 150 ppm. The 

American Conference of Governmental Industrial Hygienists (ACGIH) has recommended a threshold 

limit value (TLV) of 25 ppm for an 8-hour workday and a short-term exposure level (STEL) of 100 ppm 

(ACGIH 2012). 

The American Industrial Hygiene Association (AIHA) and the Department of Energy (DOE) have 

established values for airborne tetrachloroethylene when responding to potential releases for use in 

community emergency planning (AIHA 2011; DOE 2012). These values represent increasing severity of 
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effects (mild, irreversible, and life threatening) for a 1-hour exposure.  Tetrachloroethylene is also 

designated as a HAP (EPA 2013b). 

EPA has classified tetrachloroethylene as likely to be carcinogenic in humans by all routes of exposure 

(EPA 2012a). NTP has classified tetrachloroethylene as reasonably anticipated to be a human 

carcinogen (NTP 2011) and ACGIH (2012) has classified tetrachloroethylene as an A3 carcinogen 

(confirmed animal carcinogen with unknown relevance to humans). 

EPA (IRIS 2012) has derived an oral reference dose (RfD) for tetrachloroethylene of 0.006 mg/kg/day 

based on route-to-route extrapolation from the inhalation reference concentration. The EPA (IRIS 2012) 

inhalation reference concentration (RfC) of 0.04 mg/m3 (0.006 ppm) for tetrachloroethylene was derived 

based on the midpoint between two LOAELs: 15 mg/m3 (2 ppm) and 56 mg/m3 (8 ppm) for two 

controlled human inhalation exposure studies in which neurotoxicity was observed (Cavalleri et al. 1994; 

Echeverria et al. 1994); an uncertainty factor of 1,000 was applied in the derivation. 

EPA has designated tetrachloroethylene as a HAP under the Clean Air Act (CAA) (EPA 2013b). 

Tetrachloroethylene is on the list of chemicals appearing in “Toxic Chemicals Subject to Section 313 of 

the Emergency Planning and Community Right-to-Know Act of 1986” and has been assigned a reportable 

quantity (RQ) limit of 100 pounds (EPA 2012f). The RQ represents the amount of a designated 

hazardous substance which, when released to the environment, must be reported to the appropriate 

authority. 

Under the Toxic Substances Control Act (TSCA), tetrachloroethylene is on the list of chemicals that 

manufacturers and importers must report for each plant site at which they manufactured or imported 

tetrachloroethylene during the reporting period specified (EPA 2012j). 

The international and national regulations, advisories, and guidelines regarding tetrachloroethylene in air, 

water, and other media are summarized in Table 8-1.  
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to  
Tetrachloroethylene  

Agency Description Information Reference 
INTERNATIONAL 
Guidelines: 

IARC Carcinogenicity classification 2Aa IARC 2013 
WHO Air quality guidelines (annual average) 0.25 mg/m3 WHO 2010 

Drinking water quality guidelines 0.04 mg/L WHO 2011 
NATIONAL 
Regulations and 
Guidelines: 
a. Air 

ACGIH TLV (8-hour TWA) 25 ppm ACGIH 2012 
STEL 100 ppm 

AIHA ERPG-1b,c 100 ppm AIHA 2011 
ERPG-2 200 ppm 
ERPG-3 1,000 ppm 

DOE PAC-1d 35 ppm DOE 2012 
PAC-2 230 ppm 
PAC-3 1,200 ppm 

EPA AEGL-1e EPA 2013a 
10-minutes 35 ppm 
30-minutes 35 ppm 
60-minutes 35 ppm 
4-hours 35 ppm 
8-hours 35 ppm 

AEGL-2 
10-minutes 230 ppm 
30-minutes 230 ppm 
60-minutes 230 ppm 
4-hours 120 ppm 
8-hours 81 ppm 

AEGL-3 
10-minutes 1,600 ppm 
30-minutes 1,600 ppm 
60-minutes 1,200 ppm 
4-hours 580 ppm 
8-hours 410 ppm 
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to  
Tetrachloroethylene  

Agency Description	 Information Reference 
NATIONAL (cont.) 

EPA Hazardous air pollutant Yes EPA 2013b 
42 USC 7412 

NAAQS No data EPA 2013c 
NIOSH REL (10-hour TWA) Potential occupational NIOSH 2013 

carcinogen 
IDLH 150 ppm 

OSHA PEL (8-hour TWA) for general industry 100 ppm OSHA 2013b 
29 CFR 1910.1000, Acceptable ceiling concentration 200 ppm 
Table Z-2 

Acceptable maximum peak above the 300 ppm for 5 minutes 
acceptable ceiling concentration for an in any 3 hours 
8-hour shift 
Highly hazardous chemicals No data	 OSHA 2013a 

29 CFR 1910.119, 
Appendix A 

b. W ater 
EPA Designated as hazardous substances in No data EPA 2012b 

accordance with Section 311(b)(2)(A) of 40 CFR 116.4 
the Clean Water Act 
Drinking water contaminant candidate No data EPA 2009a 
list 74 FR 51850 
Drinking water standards and health EPA 2012c 
advisories 

One-day (mg/L) in a 10-kg child 2 mg/L 
Ten-day (mg/L) in a 10-kg child 2 mg/L 
DW EL 0.5 mg/L 
Life-time 0.01 mg/L 

National primary drinking water EPA 2009b 
standards 

MCLf 0.005 mg/L 
Public health goal Zero 

National recommended water quality EPA 2009c 
criteria: human health for the 
consumption of (at 10-4 risk) 

Water + organism 0.69 μg/L 
Organism only 3.3 μg/L 

Reportable quantities of hazardous No data EPA 2012e 
substances designated pursuant to 40 CFR 117.3 
Section 311 of the Clean Water Act 

c. Food 
FDA EAFUSg No FDA 2013 
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Agency Description	 Information Reference 
NATIONAL (cont.) 
d. Other 

ACGIH 
EPA 

Carcinogenicity classification 
Carcinogenicity classification 

RfC 
RfD 
Oral slope factor 
Inhalation unit risk 
Identification and listing of hazardous 
waste 

Inert pesticide ingredients in pesticide 
products approved for nonfood use only 
Master Testing List 
RCRA waste minimization PBT priority 
chemical list 
Standards for owners and operators of 
hazardous waste TSD facilities; 
groundwater monitoring list 
Superfund, emergency planning, and 
community right-to-know 

Designated CERCLA hazardous 
substance and reportable quantity 
pursuant to Section 307(a) of the 
Clean Water Act, Section 112 of the 
Clean Air Act, and Section 3001 of 
RCRA 
Effective date of toxic chemical  
release reporting  
Extremely hazardous substances 
and its threshold planning quantity 

TSCA chemical lists and reporting 
periods 
TSCA health and safety data reporting 

Effective date 
Reporting date 

A3h ACGIH 2012 
Likely to be carcinogenic IRIS 2012 
in humans by all routes 
of exposure 
0.04 mg/m3 

0.006 mg/kg/day 
2.1x10-3 per mg/kg/day 
1.8x10-3 per ppm 
U210 EPA 2012d 

40 CFR 261, 
Appendix VIII 

No data EPA 2013d 

Yesi EPA 2013e 
No data EPA 1998 

63 FR 60332 
Yes EPA 2012f 

40 CFR 264, 
Appendix IX 

100 pounds	 EPA 2012g 
40 CFR 302.4 

01/01/1987	 EPA 2012h 
40 CFR 372.65 

No data	 EPA 2012i 
40 CFR 355, 
Appendix A 

No data	 EPA 2012j 
40 CFR 712.30 
EPA 2012k 
40 CFR 716.120 06/01/1987 

06/01/1997 
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to  
Tetrachloroethylene  

Agency Description Information Reference 
NATIONAL (cont.) 

NTP Carcinogenicity classification Reasonably anticipated NTP 2011 
to be a human 
carcinogen 

aGroup 2A: probably carcinogenic to humans. 
bERPG-1: maximum airborne concentration below which it is believed that nearly all individuals could be exposed for  
up to 1 hour without experiencing other than mild transient adverse health effects or perceiving a clearly defined,  
objectionable odor; ERPG-2: maximum airborne concentration below which it is believed that nearly all individuals  
could be exposed for up to 1 hour without experiencing or developing irreversible or other serious health effects or  
symptoms that could impair an individual's ability to take protective action; ERPG-3: is the maximum airborne  
concentration below which it is believed that nearly all individuals could be exposed for up to 1 hour without  
experiencing or developing life-threatening health effects (AIHA 2011).  
cOdor should be detectable near ERPG-1.  
dPAC-1: mild, transient health effects; PAC-2: irreversible or other serious health effects that could impair the ability to  
take protective action; PAC-3: life-threatening health effects (DOE 2012).  
eAEGL-1: is the airborne concentration of a substance above which it is predicted that the general population,  
including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic, nonsensory  
effects; however, these effects are not disabling and are transient and reversible upon cessation of exposure;  
AEGL-2: is the airborne concentration of a substance above which it is predicted that the general population,  
including susceptible individuals, could experience irreversible or other serious, long-lasting, adverse health effects or  
an impaired ability to escape; AEGL-3: is the airborne concentration of a substance above which it is predicted that  
the general population, including susceptible individuals, could experience life-threatening adverse health effects or  
death (EPA 2013a). 
fPotential health effects from long-term exposure above the MCL could cause liver problems and increased risk of  
cancer; common sources of contaminant in drinking water include discharges from factories and dry cleaners (EPA  
2009b).  
gThe EAFUS list of substances contains ingredients added directly to food that FDA has either approved as food  
additives or listed or affirmed as GRAS.  
hA3: confirmed animal carcinogen with unknown relevance to humans.  
iTesting action development underway for acute development and immunological health effects.  

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute exposure guideline levels;  
AIHA = American Industrial Hygiene Association; CERCLA = Comprehensive Environmental Response,  
Compensation, and Liability Act; CFR = Code of Federal Regulations; DOE = Department of Energy;  
DWEL = drinking water equivalent level; EAFUS = Everything Added to Food in the United States;  
EPA = Environmental Protection Agency; ERPG = emergency response planning guidelines; FDA = Food and Drug  
Administration; FR = Federal Register; GRAS = generally recognized as safe; IARC = International Agency for  
Research on Cancer; IDLH = immediately dangerous to life or health; IRIS = Integrated Risk Information System;  
MCL = maximum contaminat level; NAAQS = National Ambient Air Quality Standards; NIOSH = National Institute for  
Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health  
Administration; PAC = protective action criteria; PBT = persistent, bioaccumulative, and toxic; PEL = permissible  
exposure limit; RCRA = Resource Conservation and Recovery Act; REL = recommended exposure limit;  
RfC = inhalation reference concentration; RfD = oral reference dose; STEL = short-term exposure level;  
TLV = threshold limit values; TSCA = Toxic Substances Control Act; TSD = treatment, storage, and disposal;  
TWA = time-weighted average; USC = United States Code; WHO = World Health Organization  
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10.  GLOSSARY 

Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible. 

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study—A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-controlled study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without outcome. 

Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 

Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure. These may suggest potential topics for scientific research, but are not actual research studies. 
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10.  GLOSSARY 

Ceiling Value—A concentration of a substance that should not be exceeded, even instantaneously. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that if met would reduce the uncertainties of human 
health assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period.  

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 

Immediately Dangerous to Life or Health (IDLH)—The maximum environmental concentration of a 
contaminant from which one could escape within 30 minutes without any escape-impairing symptoms or 
irreversible health effects. 

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 
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10.  GLOSSARY 

Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of individuals in a population who develop a specified condition to the total 
number of individuals in that population who could have developed that condition in a specified time 
period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(LO) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 
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10.  GLOSSARY 

Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA.  Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
chemical. 

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor).  An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
allowable exposure level in workplace air averaged over an 8-hour shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests. 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points.  These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 

Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows. These models require a 
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10.  GLOSSARY 

variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as air/blood partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time. 

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1 *—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually μg/L for water, mg/kg/day for food, and 
μg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime. 
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical. The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a chemical. The toxicity may be directed to the reproductive organs and/or the related 
endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual behavior, 
fertility, pregnancy outcomes, or modifications in other functions that are dependent on the integrity of 
this system. 

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 

Risk—The possibility or chance that some adverse effect will result from a given exposure to a chemical. 
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346 TETRACHLOROETHYLENE 

10.  GLOSSARY 

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, or an inborn or 
inherited characteristic that is associated with an increased occurrence of disease or other health-related 
event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—The American Conference of Governmental Industrial 
Hygienists (ACGIH) maximum concentration to which workers can be exposed for up to 15 minutes 
continually.  No more than four excursions are allowed per day, and there must be at least 60 minutes 
between exposure periods.  The daily Threshold Limit Value-Time Weighted Average (TLV-TWA) may 
not be exceeded. 

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which most workers can be exposed without adverse effect.  
The TLV may be expressed as a Time Weighted Average (TWA), as a Short-Term Exposure Limit 
(STEL), or as a ceiling limit (CL). 

Time-Weighted Average (TWA)—An allowable exposure concentration averaged over a normal 8-hour 
workday or 40-hour workweek. 

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any chemical that is foreign to the biological system. 
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A-1 TETRACHLOROETHYLENE 

APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration 

of exposure. MRLs are based on noncancer health effects only and are not based on a consideration of 

cancer effects. These substance-specific estimates, which are intended to serve as screening levels, are 

used by ATSDR health assessors to identify contaminants and potential health effects that may be of 

concern at hazardous waste sites.  It is important to note that MRLs are not intended to define clean-up or 

action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach. They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects. MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure.  MRLs are generally based on the most sensitive chemical-induced end 

point considered to be of relevance to humans.  Serious health effects (such as irreparable damage to the 

liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 

MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 
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are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive. Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL 

Workgroup reviews, with participation from other federal agencies and comments from the public. They 

are subject to change as new information becomes available concomitant with updating the toxicological 

profiles. Thus, MRLs in the most recent toxicological profiles supersede previously published levels. 

For additional information regarding MRLs, please contact the Division of Toxicology and Human 

Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop 

F-57, Atlanta, Georgia 30333. 
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APPENDIX A 

MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Tetrachloroethylene 
CAS Number: 127-18-4 
Date: February 2014 
Profile Status: Draft for Public Comment 
Route: [x] Inhalation [ ] Oral 
Duration: [x] Acute  [ ] Intermediate   [ ] Chronic 
Graph Key: 128 
Species: Human 

Minimal Risk Level: 0.006 [ ] mg/kg/day  [x] ppm  

Reference: Cavalleri A; Gobba F; Paltrinieri M; et al. 1994. Perchloroethylene exposure can induce  
colour vision loss. Neurosci Lett 179:162-166.  

Experimental design: See worksheet for chronic inhalation MRL.  

Effects noted in study and corresponding doses: See worksheet for chronic inhalation MRL.  

Dose and end point used for MRL derivation: See worksheet for chronic inhalation MRL.  

[ ] NOAEL   [x] LOAEL  

1.7 ppm  

Uncertainty Factors used in MRL derivation:  

[x] 10 for use of a LOAEL 
[ ]  10 for extrapolation from animals to humans 
[x]  10 for human variability 

Modifying Factors used in MRL derivation: 

[x]  3 for database deficiencies (inadequate information on low-dose immune system effects) 

Was a conversion used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Was a conversion used from intermittent to continuous exposure? See worksheet for chronic inhalation 
MRL. 

Other additional studies or pertinent information which lend support to this MRL: Data available for 
acute-duration inhalation MRL derivation include three controlled human exposure studies and several 
animal studies. The lowest effect levels were identified in the human exposure studies by Altmann et al. 
(1990, 1992).  In the study by Altmann et al. (1992), male volunteers were exposed to tetrachloroethylene 
at 10 or 50 ppm, 4 hours/day for 4 days. Corresponding equivalent continuous exposure concentrations 
are 2 and 10 ppm. At 50 ppm, pattern reversal visual-evoked potential latencies increased (p<0.05) and 
significant performance deficits for vigilance (p=0.04) and eye-hand coordination (p=0.05) were 
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observed.  No effects on brainstem auditory-evoked potential were noted at either concentration.  Because 
a faint odor was reported by 33% of the subjects at 10 ppm and 29% of the subjects at 50 ppm on the first 
day of testing, and by 15% of the subjects at 10 ppm and 36% of the subjects at 50 ppm on the last day of 
testing, the investigators concluded that only a few subjects could identify their exposure condition.  In a 
similar study by Altmann et al. (1990), significant (p<0.05) increased latencies for pattern reversal visual-
evoked potentials were observed in 10 male volunteers exposed to tetrachloroethylene at 50 ppm, 
compared to 12 men exposed at 10 ppm.  Exposures in this study were also 4 hours/day for 4 days, 
resulting in equivalent continuous exposure concentrations of 2 and 10 ppm.  Effects on brainstem 
auditory-evoked potentials were not observed in the Altmann et al. (1990) study.  Tetrachloroethylene in 
the blood increased with exposure duration, and linear regression to associate blood tetrachloroethylene 
with pattern reversal visual-evoked potential latencies was significant (r=-0.45, p<0.03).  Additional tests 
of neurological function were not conducted in this study. These two studies identified a NOAEL of 
10 ppm (2 ppm equivalent continuous exposure concentration). 

Hake and Stewart (1977) did not find any changes in flash-evoked potentials or equilibrium tests in four 
male subjects exposed to increasing concentrations of tetrachloroethylene 7.5 hours/day for 5 days. The 
subjects were sequentially exposed to 0, 20, 100, and 150 ppm (each concentration 1 week).  
Corresponding equivalent continuous exposure concentrations are 6.25, 31, and 47 ppm. Subjective 
evaluation of EEG scores suggested cortical depression in subjects exposed at 100 ppm.  Decreases in the 
Flanagan coordination test were observed at ≥100 ppm. 

Animal studies of acute-duration exposure to tetrachloroethylene have demonstrated neurological effects, 
but at higher concentrations than the human study by Altmann et al. (1990) (>16 ppm continuous 
equivalent concentration; Boyes et al. 2009; DeCeurriz et al. 1983; Mattsson et al. 1998; NTP 1986; 
Oshiro et al. 2008; Savolainen et al. 1977).  PBPK modeling simulations suggest equivalent 
tetrachloroethylene blood AUCs for rats and humans exposed to the same inhaled concentrations (Chiu 
and Ginsberg 2011), indicating that the human-equivalent concentrations for these studies are also 
≥16 ppm and higher than the human effect levels identified by Altmann et al. (1990, 1992).  Thus, animal 
studies were not considered to be suitable options for acute-duration MRL derivation. 

An acute-duration inhalation MRL could be obtained using the controlled human exposure study by 
Altmann et al. (1990, 1992).  This study identified a NOAEL of 2 ppm (equivalent continuous exposure 
concentration) for neurobehavioral changes. This value is equal to the LOAEL of 1.7 ppm for color 
vision decrements in the chronic-duration epidemiological study by Cavalleri et al. (1994).  Given that the 
NOAEL was from a study in which exposures were for only 4 hours per day for 4 days, it is uncertain 
whether this value would be adequately protective for longer exposures (up to 2 weeks).  In male 
volunteers exposed to 1 ppm tetrachloroethylene for 6 hours, venous blood concentrations continued to 
increase between 4 and 6 hours (Chiu et al. 2007); likewise, when venous blood was sampled before each 
of four daily 4-hour exposures to tetrachloroethylene at 10 or 50 ppm, concentrations continued to 
increase each day from 36 μg/L before the second exposure to 10 ppm up to 56 μg/L 1 day after the fourth 
daily exposure (Altmann et al. 1990).  These data suggest that continuous or repeated exposures over 
durations longer than 4 days may yield higher blood levels than seen after four daily 4-hour exposures, 
and that the NOAEL of 2 ppm observed in the study by Altmann et al. (1990) may not be adequately 
protective for exposures up to 2 weeks.  Because it is very close to the NOAEL from acute-duration 
exposure, the chronic-duration LOAEL of 1.7 ppm (continuous equivalent exposure concentration) from 
Cavalleri et al. (1994) may represent a better basis for acute and intermediate-duration MRLs. A PBPK 
model (Chiu and Ginsberg 2011) was used to evaluate the effect of exposure duration on the AUC of the 
blood concentration-time curve at a continuous exposure of 1.7 ppm.  This simulation showed that the 
24-hour AUC blood concentration-time values are very similar after 14 days, 90 days, 365 days, and 
2 years of exposure (see Table A-1 below). These simulations predict that the blood AUC of 
tetrachloroethylene is nearly constant after 2 weeks of continuous exposure.  The blood concentration 
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reaches approximately 90% of reaches steady-state at about 2 weeks of continuous exposure and 99% of 
steady state at 90 days.  Given that the tetrachloroethylene AUC after acute-duration exposure is very 
similar to that after chronic exposure to the same concentration, the chronic MRL was adopted as the 
acute-duration MRL. 

Table A-1. Predicted Effect of Exposure Duration on Human Blood Levels of  
Tetrachloroethylene During Continuous (24 Hours/day,  

7 Days/week) Inhalation Exposure to 1.7 ppm  

Exposure duration (days) 
PBPK dose metric 14 90 365 728 
Area under the blood concentration-time curve 
(mg-24 hour/L per ppm) 

1.799 1.999 2.029 2.033 

Agency Contact (Chemical Manager): Robert Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Tetrachloroethylene 
CAS Number: 127-18-4 
Date: February 2014 
Profile Status: Draft for Public Comment 
Route: [x] Inhalation [ ] Oral 
Duration: [ ] Acute [x] Intermediate   [ ] Chronic 
Graph Key: 128 
Species: Human 

Minimal Risk Level: 0.006 [ ] mg/kg/day  [x] ppm  

Reference: Cavalleri A; Gobba F; Paltrinieri M; et al. 1994. Perchloroethylene exposure can induce  
colour vision loss. Neurosci Lett 179:162-166.  

Experimental design:  See worksheet for chronic inhalation MRL.  

Effects noted in study and corresponding doses: See worksheet for chronic inhalation MRL.  

Dose and end point used for MRL derivation:  

[ ] NOAEL   [x] LOAEL  

1.7 ppm  

Uncertainty Factors used in MRL derivation:  

[x]  10 for use of a LOAEL 
[ ]  10 for extrapolation from animals to humans 
[x]  10 for human variability 

Modifying Factors used in MRL derivation: 

[x]  3 for database deficiencies (inadequate information on low-dose immune system effects) 

Was a conversion used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Was a conversion used from intermittent to continuous exposure? See worksheet for chronic inhalation 
MRL. 

Other additional studies or pertinent information which lend support to this MRL: Available 
intermediate-duration studies that examined or observed neurological or neurobehavioral effects in 
animals (e.g., Karlsson et al. 1987; Kyrklund et al. 1988, 1990; Mattsson et al. 1992, 1998; Rosengren et 
al. 1986; Tinston 1995; Wang et al. 1993) identified effect levels much higher than the acute-duration 
human studies (Altmann et al. 1990, 1992; Hake and Stewart 1977).  In addition, the available data 
suggest that low effect levels in humans from acute-duration exposure are similar to those for the chronic-
duration LOAEL of 1.7 ppm (continuous equivalent exposure concentration) from Cavalleri et al. (1994), 
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suggesting that the same MRL may be applicable to all exposure durations.  A PBPK model (Chiu and 
Ginsberg 2011) was used to evaluate the effect of exposure duration on the AUC of the blood 
concentration-time curve at a continuous exposure of 1.7 ppm.  This simulation showed that and 24-hour 
AUC values are very similar after 14 days, 90 days, 365 days, and 2 years of exposure (see Table A-2). 
These simulations predict that the blood AUC of tetrachloroethylene is nearly constant after 2 weeks of 
continuous exposure.  The blood concentration reaches approximately 90% of reaches steady-state at 
about 2 weeks of continuous exposure and 99% of steady state at 90 days.  Given that the 
tetrachloroethylene AUC after intermediate-duration exposure is the same as that after chronic exposure 
to the same concentration, the chronic MRL was adopted as the intermediate-duration MRLs. 

Table A-2. Predicted Effect of Exposure Duration on Human Blood Levels of  
Tetrachloroethylene During Continuous (24 Hours/day,  

7 Days/week) Inhalation Exposure to 1.7 ppm  

Exposure duration (days) 
PBPK dose metric 14 90 365 728 
AUC (mg-24 hour/L per ppm) 1.799 1.999 2.029 2.033 

Agency Contact (Chemical Manager): Robert Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Tetrachloroethylene 
CAS Number: 127-18-4 
Date: February 2014 
Profile Status: Draft for Public Comment 
Route: [x] Inhalation [ ] Oral 
Duration: [ ] Acute [ ] Intermediate  [x] Chronic 
Graph Key: 128 
Species: Human 

Minimal Risk Level: 0.006 [ ] mg/kg/day  [x] ppm 

Reference: Cavalleri A; Gobba F; Paltrinieri M; et al. 1994. Perchloroethylene exposure can induce 
colour vision loss. Neurosci Lett 179:162-166. 

Gobba F; Righi E; Fantuzzi G; et al. 1998. Two-year evolution of perchloroethylene-induced color-
vision loss. Arch Environ Health 53:196-198. 

Experimental design: Color vision was evaluated in 35 tetrachloroethylene-exposed workers (22 dry 
cleaners and 13 ironers) with an average of 106 months of exposure. Concentrations were measured in 
the breathing zone by personal passive samplers. The TWA concentrations for all workers ranged from 
0.38–31.19 ppm, with mean exposures of 6.23, 7.27, and 4.80 ppm for all workers, dry cleaners, and 
ironers, respectively. Controls included an equal number (35) of workers without occupational exposure 
to solvents, and were matched for sex, age, alcohol consumption, and cigarette smoking. Color vision 
was evaluated by the Lanthany 15 Hue desaturated panel (D-15d) test, which is designed for early 
detection of acquired dyschromatopsia. The results of the test were expressed as color confusion index 
(CCI). The subjects were reexamined 2 years later using the same test; results were reported by Gobba et 
al. (1998). 

Effects noted in study and corresponding doses: The results of the color vision test showed a significant 
decrease in color vision (mainly blue-yellow range) in the dry cleaners exposed to a mean concentration 
of 7.3 ppm.  The results of multivariate analysis demonstrated lack of correlation with age, alcohol, etc.  
Mean (±standard deviation) CCI scores were 1.192±0.133 in dry cleaners compared with 1.089±0.117 in 
controls (p=0.007).  Reexamination of the workers 2 years later showed that those workers whose 
exposure to tetrachloroethylene had increased (from a geometric mean concentration of 1.67 to 4.35 ppm, 
p<0.01) experienced further decrements in color vision (from a mean CCI of 1.16 to 1.26, p<0.01), while 
those whose exposure had decreased (from a geometric mean concentration of 2.95 to 0.66 ppm) 
experienced no change in CCI (Gobba et al. 1998). The 7.3 ppm concentration was multiplied by 
8/24 hours and 5/7 days to yield an equivalent continuous exposure concentration of 1.7 ppm. The 
1.7 ppm concentration was considered a LOAEL for decreased color vision and was used to derive the 
chronic MRL. 

Dose and end point used for MRL derivation: 

[ ] NOAEL   [x] LOAEL 

1.7 ppm, increased CCI 
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Uncertainty Factors used in MRL derivation: 

[x]  10 for use of a LOAEL  
[ ]  10 for extrapolation from animals to humans  
[x]  10 for human variability 

Modifying Factors used in MRL derivation: 

[x]  3 for database deficiencies (inadequate information on low-dose immune system effects) 

Was a conversion used from ppm in food or water to a mg/body weight dose? No. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose; 
was a conversion used from intermittent to continuous exposure? To convert from occupational exposure 
to continuous exposure, the 7.3 ppm concentration was multiplied by 8/24 hours and 5/7 days to yield an 
equivalent continuous exposure concentration of 1.7 ppm. 

Other additional studies or pertinent information which lend support to this MRL:  The nervous system is 
a well-established target of tetrachloroethylene exposure in humans and animals, and effects on this 
system occur at lower concentrations than effects in other target organs such as the liver or kidney. There 
is a substantial number of studies evaluating the effects of inhaled tetrachloroethylene in occupationally 
exposed individuals, particularly those engaged in dry cleaning activities.  More recent studies have also 
examined residential populations living in buildings that also housed dry cleaning facilities or in buildings 
in close proximity to such facilities.  The human epidemiological studies (especially Cavalleri et al. 1994; 
Echeverria et al. 1995; Gobba et al. 1998; Schneiber et al. 2002; Storm et al. 2011), combined with a 
small number of human controlled exposure experiments (Altmann et al. 1990; Hake and Stewart 1977), 
have identified central nervous system effects after acute-, intermediate-, and chronic-duration exposures 
to tetrachloroethylene. 

Storm et al. (2011) recruited adults and children living in New York City buildings with or without 
colocated dry cleaners for a larger study of visual acuity and contrast sensitivity.  There were a number of 
differences between the exposed and referent groups with respect to education, race/ethnicity, and 
income.  The exposed subjects were stratified into low and high exposure (<100 or >100 μg/m3 

tetrachloroethylene) based on 24-hour air samples; exhaled air and blood were also analyzed for 
tetrachloroethylene.  Geometric mean indoor air concentrations of 0.00046, 0.0018, or 0.050 ppm 
tetrachloroethylene were reported for the referent, low, and high exposure groups of children (n=56, 39, 
and 11, respectively); for adult participants, the respective concentrations were 0.00043, 0.0017, or 
0.070 ppm (n=49, 43, and 12, respectively).  Visual acuity testing was limited to far distance visual 
contrast only, and the response was scored as either perfect or less than perfect.  In children, a higher 
concentration of tetrachloroethylene in indoor air was associated with a higher odds of achieving less than 
the maximum score (in the poorer performing eye) at a spatial frequency of 12 cycles per degree of visual 
arc; the effect remained after adjustment for race, ethnicity, and age (adjusted OR of 2.64; 95% CI 1.41– 
5.52). Visual contrast sensitivity of adults was not associated with measures of tetrachloroethylene 
exposure.  Due to the limitations of this study, including the use of an insensitive vision test and 
differences between exposed and referent populations that were not accounted for, this study is not 
considered to be a candidate for MRL derivation. 

Schreiber et al. (2002) evaluated a group of residents (n=17) and a group of daycare workers (n=9), each 
of whom was exposed to tetrachloroethylene for an average of 4 or 5.8 years, respectively, originating 
from a dry cleaner that was co-located with the residence or daycare.  Age- and sex-matched controls 
without exposure consisted of NYSDOH employees.  Visual acuity, color discrimination, and contrast 
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sensitivity were assessed in these groups; investigators involved in vision testing were not blinded to the 
exposure status.  Ambient and personal air monitoring results suggested mean concentrations of about 
0.11 ppm among the residents and about 0.3 ppm among the daycare workers.  In both groups, significant 
(p<0.001) decreases in visual contrast sensitivity were observed when compared with the unexposed 
referent groups.  Due to limitations of this study including: small sample size (17 exposed and 
17 controls), selection bias in choice of referent population (NYSDOH employees), and vision testing by 
investigators not blinded to exposure status, it was not selected for use in MRL derivation. 

Altmann et al. (1995) evaluated neurobehavioral effects of tetrachloroethylene in 14 persons living above 
or next to dry cleaning facilities for 1–30 years compared with 23 unexposed controls.  The median 
concentrations of tetrachloroethylene were 0.2 and 0.003 ppm in the apartments of exposed and control 
subjects, respectively; blood concentrations measured in the examination room (not in the apartments) 
were 17.8±46.9 μg/L (mean±standard deviation) in exposed subjects and below the 0.5 μg/L detection 
limit in controls. A neurological test battery, including pattern reversal visual-evoked potentials, 
continuous performance test, hand-eye coordination, finger tapping, simple reaction time, and visual 
memory, was administered to both groups.  No significant differences between the groups were observed 
when the unadjusted test results were compared (Altmann et al. 1995). However, when results were 
analyzed using multivariate analysis to adjust for age, gender, and education, response time in the 
continuous performance test and simple reaction time were increased (p<0.05), and a smaller number of 
stimuli were identified correctly by the exposed subjects (p<0.05) relative to 23 controls.  Limitations of 
this study include its small sample size and differences in educational level between the exposed and 
referent groups. 

Performance on neurobehavioral tests was also assessed in a study of 65 dry cleaning workers exposed to 
tetrachloroethylene for at least 1 year (Echeverria et al. 1995). The workers were grouped into low, 
medium, or high exposure categories based on job title and years of employment.  Exposure estimates for 
the three categories were based on air concentrations measured in the breathing zone of clerks, pressors, 
and operators (8-hour TWA concentrations were 11.2, 23.2, and 40.8 ppm, respectively).  
Neurobehavioral tests that measured short-term memory for visual designs showed deficits in the high-
exposure group (40.8 ppm) relative to the low-exposure group (11.2 ppm). After adjustment for potential 
confounding, scores for pattern recognition, pattern memory, and visual reproduction were significantly 
reduced (4, 7, and 14%, respectively; p<0.01) in the high-exposure group compared with the low-
exposure group.  Echeverria et al. (1995) also described four cases referred for neuropsychologic 
assessment of possible tetrachloroethylene encephalopathy.  The subjects performed below expectation on 
tasks assessing memory, motor, visuospatial, and executive functions, with milder attentional deficits. 

Neurological effects of tetrachloroethylene exposure in laboratory rodents are qualitatively similar to 
those seen in human studies.  Mice and rats have exhibited anesthetic effects after acute exposure to high 
concentrations of tetrachloroethylene (Friberg et al. 1953; Goldberg et al. 1964; NTP 1986; Rowe et al. 
1952).  Rats exposed to 3,000 ppm tetrachloroethylene became anesthetized in several hours, while those 
exposed to 6,000 ppm were anesthetized in minutes (Rowe et al. 1952).  Anesthesia was observed in mice 
within 2.5 minutes of breathing air containing 6,800 ppm tetrachloroethylene (Friberg et al. 1953). Mice 
inhaling tetrachloroethylene for 4 hours showed signs of anesthesia at a concentration of 2,328 ppm (NTP 
1986).  Rats became ataxic following exposure to 2,300 ppm for 4 hours (Goldberg et al. 1964).  
Dyspnea, hypoactivity, hyperactivity, anesthesia, and ataxia were noted in mice and rats exposed to 
1,750 ppm for 6 hours/day, 5 days/week for 2 weeks; these effects were not seen at lower concentrations 
(up to 875 ppm) (NTP 1986).  Lower concentrations have resulted in effects on visual-evoked potentials 
(Albee et al. 1991; Boyes et al. 2009; Mattsson et al. 1998), EEG patterns (Albee et al. 1991), and 
neurobehavioral tests (Oshiro et al. 2008; Savolainen et al. 1977), as well as brain chemistry (Karlsson et 
al. 1987; Kyrklund et al. 1988; Rosengren et al. 1986; Wang et al. 1993) in laboratory rodents or gerbils. 
Male Long-Evans rats exposed for 1.5 hours to concentrations of 250, 500, or 1,000 ppm exhibited 
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reduced amplitude of visual evoked potentials at all exposure concentrations (Boyes et al. 2009).  Albee et 
al. (1991) reported electrophysiological changes including altered shape, reduced amplitude, and 
decreased latency of flash-evoked potentials; decreased latency of somatosensory evoked potentials; and 
EEG changes in male rats exposed to tetrachloroethylene at 800 ppm 4 hours/day for 4 days.  Similar 
findings were observed when male F344 rats were exposed 6 hours/day for 4 days to 800 ppm 
tetrachloroethylene as a pilot study in preparation for a subchronic study (Mattsson et al. 1998). 
Impairment of sustained attention was observed in male Long-Evans rats exposed for 1 hour to 
concentrations ≥500 ppm tetrachloroethylene (Oshiro et al. 2008).  Open-field behavior (ambulation) was 
elevated in groups of 10 male rats exposed to 200 ppm tetrachloroethylene of unspecified purity for 
6 hours/day for 4 days (Savolainen et al. 1977).  Ambulation was significantly increased 1 hour, but not 
17 hours, after the last exposure (Savolainen et al. 1977). 

In addition, brain chemistry has been altered in laboratory rodents or gerbils exposed to 
tetrachloroethylene (Karlsson et al. 1987; Kyrklund et al. 1984, 1988; Rosengren et al. 1986; Wang et al. 
1993). Gerbils exposed to 320 ppm continuously for 3 months followed by a 4-month exposure-free 
period had changes in levels of S-100 protein, a marker for astrocytes as well as other cells in the 
peripheral nervous system and skin (Rosengren et al. 1986).  Rats exposed to 320 ppm continuously for 
30 days had changes in brain cholesterol, lipids, and polyunsaturated fatty acids (Kyrklund et al. 1988).  
Changes in the fatty acid composition of the brain were also observed in rats continuously exposed to 
tetrachloroethylene at 320 ppm for 90 days (Kyrklund et al. 1990).  Gerbils exposed to 60 or 320 ppm had 
decreased DNA content in portions of the cerebrum (Karlsson et al. 1987; Rosengren et al. 1986).  Gerbils 
exposed to 120 ppm continuously for 12 months had altered phospholipid content (phosphatidylethanol-
amine) in the cerebral cortex and hippocampus (Kyrklund et al. 1984).  In rats exposed to 600 ppm 
tetrachloroethylene continuously for 4 weeks, cytoskeletal elements of neuronal cells (neurofilament 
68 kD polypeptide) were significantly reduced in the frontal cerebral cortex, hippocampus, and brainstem; 
after 12 weeks at this concentration, a cytosolic marker (glial S-100) and cytoskeletal elements of glial 
cells (glial fibrillary acid protein) were also significantly reduced in all three brain regions (Wang et al. 
1993). 

Agency Contact (Chemical Manager): Robert Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Tetrachloroethylene 
CAS Number: 127-18-4 
Date: February 2014 
Profile Status: Draft for Public Comment 
Route: [ ] Inhalation [x] Oral 
Duration: [x] Acute  [ ] Intermediate   [ ] Chronic 
Graph Key: 128 (see Figure 3-1) 
Species: Human 

Minimal Risk Level: 0.008 [x] mg/kg/day  [ ] ppm 

Reference: Cavalleri A; Gobba F; Paltrinieri M; et al. 1994. Perchloroethylene exposure can induce 
colour vision loss.  Neurosci Lett 179:162-166. 

Gobba F; Righi E; Fantuzzi G; et al.  1998. Two-year evolution of perchloroethylene-induced color-
vision loss.  Arch Environ Health 53:196-198.  

Experimental design: See worksheet for chronic-duration inhalation MRL.  

Effects noted in study and corresponding doses: See worksheet for chronic-duration inhalation MRL.  

Dose and end point used for MRL derivation:  

[ ] NOAEL   [x] LOAEL  

2.3 mg/kg/day, increased CCI, estimated by route-to-route extrapolation from continuous-equivalent 
inhalation exposure concentration of 1.7 ppm. 

Uncertainty Factors used in MRL derivation: 

[x]  10 for use of a LOAEL 
[ ]  10 for extrapolation from animals to humans 
[x]  10 for human variability 

Modifying Factors used in MRL derivation: 

[x]  3 for database deficiencies (inadequate information on low-dose immune system effects) 

Was a conversion used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Was a conversion used from intermittent to continuous exposure? See worksheet for chronic-duration 
inhalation MRL. 

Other additional studies or pertinent information which lend support to this MRL: There is abundant 
evidence for neurological and neurobehavioral effects after chronic, low exposures to tetrachloroethylene.  
While this evidence is primarily available from studies of inhalation exposure, effects after oral exposure 
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are expected to be similar based on the available oral data and pharmacokinetic studies suggesting similar 
blood levels of parent compound after inhalation and oral exposure of humans to tetrachloroethylene (see 
for example, the PBPK model by Chiu and Ginsberg [2011]).  Among human and animal studies 
identifying neurological or neurobehavioral effects after acute-duration oral exposure, the lowest effect 
level was identified by Fredrikkson et al. (1993).  Fredriksson et al. (1993) identified a LOAEL of 
5 mg/kg/day for hyperactivity in male NMRI mice exposed via gavage for 7 days beginning on postnatal 
day 10 (Fredriksson et al. 1993).  Significant pharmacokinetic differences between mice and humans lead 
to markedly different blood levels of parent compound after oral exposure to tetrachloroethylene; thus, 
mice are not a good model for neurological effects of tetrachloroethylene exposure in humans.  Other 
acute-duration studies evaluating neurological responses used doses at least 10-fold higher.  In addition, 
the LOAEL of 5 mg/kg/day identified in mice is similar to the POD of 2.3 mg/kg/day for the chronic oral 
MRL.  Given the lack of suitable acute-duration oral data, and the observation that neurobehavioral effect 
levels for acute-duration exposure in humans are similar to those for chronic-duration exposure, the acute 
oral MRL was set equal to the chronic oral MRL. 

Agency Contact (Chemical Manager): Robert Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Tetrachloroethylene 
CAS Number: 127-18-4 
Date: February 2014 
Profile Status: Draft for Public Comment 
Route: [ ] Inhalation [x] Oral 
Duration: [ ] Acute   [x] Intermediate   [ ] Chronic 
Graph Key: 128 (see Figure 3-1) 
Species: Human 

Minimal Risk Level: 0.008 [x] mg/kg/day  [ ] ppm 

Reference: Cavalleri A; Gobba F; Paltrinieri M; et al. 1994. Perchloroethylene exposure can induce 
colour vision loss.  Neurosci Lett 179:162-166. 

Gobba F; Righi E; Fantuzzi G; et al.  1998. Two-year evolution of perchloroethylene-induced color-
vision loss.  Arch Environ Health 53:196-198.  

Experimental design:  See worksheet for chronic-duration inhalation MRL.  

Effects noted in study and corresponding doses:  See worksheet for chronic-duration inhalation MRL.  

Dose and end point used for MRL derivation:  

[ ] NOAEL   [x] LOAEL  

2.3 mg/kg/day, increased CCI, estimated by route-to-route extrapolation from continuous- equivalent 
inhalation exposure concentration of 1.7 ppm. 

Uncertainty Factors used in MRL derivation: 

[x]  10 for use of a LOAEL 
[  ]  10 for extrapolation from animals to humans 
[x]  10 for human variability 

Modifying Factors used in MRL derivation: 

[x]  3 for database deficiencies (inadequate information on low-dose immune system effects) 

Was a conversion used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Was a conversion used from intermittent to continuous exposure?  See worksheet for chronic-duration 
inhalation MRL. 

Other additional studies or pertinent information which lend support to this MRL: There is abundant 
evidence for neurological and neurobehavioral effects at low exposures to tetrachloroethylene.  While this 
evidence is primarily available from studies of inhalation exposure, effects after oral exposure are 
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expected to be similar based on the available oral data and pharmacokinetic studies suggesting similar 
blood levels of parent compound after inhalation and oral exposure of humans to tetrachloroethylene (see 
for example, the PBPK model by Chiu and Ginsberg [2011]).  Among human and animal studies of 
intermediate-duration oral exposure, only Chen et al. (2002) examined sensitive neurological or 
neurobehavioral effects.  An intermediate-duration 8-week study by Chen et al. (2002) identified a 
LOAEL of 5 mg/kg/day (adjusted to equivalent continuous dose of 3.6 mg/kg/day based on 
administration on 5 days/week) for impaired nociception (increased latency to tail withdrawal from hot 
water and increased response latency to hot plate tests) and increased threshold for pentylenetetrazol-
induced seizure initiation. PBPK modeling results reported by Chiu and Ginsberg (2011) indicate that the 
area under the tetrachloroethylene blood concentration-time curve for humans is about twice that of rats 
across a wide range continuous oral doses (0.01–1,000 mg/kg/day). Thus, the human-equivalent LOAEL 
dose from the study by Chen et al. (2002) is 1.8 mg/kg/day.  This LOAEL is virtually identical to the 
human oral LOAEL of 2.3 mg/kg/day obtained by route-to-route extrapolation from the Cavalleri et al. 
(1994) chronic inhalation study.  Because the human data provide a better basis for MRL derivation than 
the rat data, the chronic-duration oral MRL was applied to all exposure durations. 

It should be noted that the lowest effect levels for acute- or intermediate-duration oral exposure to 
tetrachloroethylene were from rat and mouse studies of drinking water exposures examining immune 
stimulation. Seo et al. (2008a, 2012) observed enhancement of antigen-stimulated allergic responses in 
rats and mice exposed to estimated doses of 0, 0.0009, or 0.09 mg/kg/day (rats) and 0, 0.0025, or 
0.26 mg/kg/day (mice) tetrachloroethylene administered in drinking water for 2 or 4 weeks.  Little 
support for the observed enhancement of allergic response has been shown in other animal studies of 
tetrachloroethylene exposure, and few human data pertaining to immune system effects of 
tetrachloroethylene are available. The studies by Seo et al. (2008a, 2012) were considered for MRL 
derivation.  However, the evidence for enhanced allergic responses after oral tetrachloroethylene exposure 
is limited to studies from a single laboratory using small numbers of animals (4–6 per group) and 
uncertain dose estimates, and support for immune system perturbation in animals or humans exposed to 
tetrachloroethylene is lacking.  Furthermore, the effects reported by Seo and coworkers (enhanced passive 
and active cutaneous anaphylaxis, increased histamine release, etc.) are of uncertain toxicological and 
human health relevance, as it is unclear when these responses can be considered adverse. Due to the lack 
of supporting evidence for immune system perturbation, unclear relevance of the enhanced allergic 
response to humans, and uncertainty regarding when such an effect is considered adverse, these studies 
were not used for oral MRL derivation. 

Agency Contact (Chemical Manager): Robert Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Tetrachloroethylene 
CAS Number: 127-18-4 
Date: February 2014 
Profile Status: Draft for Public Comment 
Route: [ ] Inhalation [x] Oral 
Duration: [ ] Acute   [ ] Intermediate  [x] Chronic 
Graph Key: 128 (see Figure 3-1) 
Species: Human 

Minimal Risk Level: 0.008 [x] mg/kg/day  [ ] ppm 

Reference: Cavalleri A; Gobba F; Paltrinieri M; et al.  1994.  Perchloroethylene exposure can induce 
colour vision loss.  Neurosci Lett 179:162-166. 

Gobba F; Righi E; Fantuzzi G; et al.  1998. Two-year evolution of perchloroethylene-induced color-
vision loss.  Arch Environ Health 53:196-198. 

Experimental design:  See worksheet for chronic-duration inhalation MRL. 

Effects noted in study and corresponding doses:  See worksheet for chronic-duration inhalation MRL. 

Dose and end point used for MRL derivation: 

[ ] NOAEL   [x] LOAEL 

2.3 mg/kg/day, increased CCI, estimated by route-to-route extrapolation from continuous- equivalent 
inhalation exposure concentration of 1.7 ppm. The internal dose metric chosen for route-to-route 
extrapolation was the 24-hour AUC of the tetrachloroethylene blood concentration-time curve.  While it 
is not certain whether the neurological effects of tetrachloroethylene result from the parent compound or 
one or more of its metabolites, the AUC of the tetrachloroethylene blood concentration-time curve is 
assumed to represent a reasonable surrogate for the internal dose of the ultimate toxicant(s).  In addition, 
Chiu and Ginsberg (2011) showed that alternative dose metrics (based on metabolites) yielded minimal 
differences in route-to-route extrapolation (within 1.4-fold of the extrapolation based on blood AUC). 
Based on simulations of the Chiu and Ginsberg (2011) model, a continuous inhalation exposure to 
1.7 ppm yields the same 24-hour AUC as a continuous oral dose of 2.3 mg/kg/day. 

Uncertainty Factors used in MRL derivation: 

[x]  10 for use of a LOAEL 
[  ]  10 for extrapolation from animals to humans 
[x]  10 for human variability 

Modifying Factors used in MRL derivation: 

[x]  3 for database deficiencies (inadequate information on low-dose immune system effects) 

Was a conversion used from ppm in food or water to a mg/body weight dose? Not applicable. 
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If an inhalation study in animals, list the conversion factors used in determining human equivalent dose: 
Not applicable. 

Was a conversion used from intermittent to continuous exposure?  See worksheet for chronic-duration 
inhalation MRL. 

Other additional studies or pertinent information which lend support to this MRL:  The available human 
epidemiological studies of oral exposure to tetrachloroethylene do not provide sufficient exposure 
information to identify effect levels, and are thus not suitable for oral MRL derivation. The only 
available chronic-duration oral study of tetrachloroethylene in animals is the NCI (1977) cancer bioassay. 
In this study, survival was decreased at the lowest dose in both rats and mice; thus, it is also not suitable 
for use in deriving a chronic-duration oral MRL. 

There is abundant evidence for neurological and neurobehavioral effects after chronic, low exposures to 
tetrachloroethylene.  While this evidence is primarily available from studies of inhalation exposure, 
effects after oral exposure are expected to be similar based on the available oral data and pharmacokinetic 
studies suggesting similar blood levels of parent compound after inhalation and oral exposure of humans 
to tetrachloroethylene (see for example, the PBPK model by Chiu and Ginsberg [2011]).  Given the lack 
of suitable chronic-duration oral data, and the availability of a robust PBPK model for route-to-route 
extrapolation, the chronic-duration MRL was derived by route-to-route extrapolation from the chronic-
duration inhalation MRL using the PBPK model.  

Agency Contact (Chemical Manager): Robert Williams 
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B-1 TETRACHLOROETHYLENE 

APPENDIX B.  USER'S GUIDE 

Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language. Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern. The 
topics are written in a question and answer format. The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight-
of-evidence discussions for human health end points by addressing the following questions: 

1.	 What effects are known to occur in humans? 

2.	 What effects observed in animals are likely to be of concern to humans? 

3.	 What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect. Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not 
meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 
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MRLs should help physicians and public health officials determine the safety of a community living near 
a chemical emission, given the concentration of a contaminant in air or the estimated daily dose in water.  
MRLs are based largely on toxicological studies in animals and on reports of human occupational 
exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.  

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgment, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgment or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects. These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000.  Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario. The LSE tables and figures should always be used in 
conjunction with the text. All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1) 	 Route of Exposure. One of  the first considerations when reviewing the toxicity of a substance 
using these  tables  and figures should be the relevant and appropriate route of  exposure.  Typically  
when sufficient  data exist, three LSE  tables and  two LSE figures are presented in  the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE  Tables 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation  
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all  substances will have data on each  
route of  exposure and will  not, therefore, have all five of the tables and figures.  

 
(2) 	 Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 

364 da ys), and chronic  (365 days or more)—are presented within each  relevant  route of exposure.   
In this example, an inhalation study of intermediate  exposure duration is  reported.  For quick  
reference to health effects occurring from a known length of  exposure, locate the applicable 
exposure period within the  LSE table and figure.  

 
(3) 	 Health Effect.   The major categories of health effects included in LSE tables and figures are 

death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and  figures for a ll effects but cancer.   
Systemic effects are further defined  in  the "System" column of the LSE table (see key number  
18).  

 
(4) 	 Key to Figure. Each key number in the LSE table links study information to one  or more data 

points using the  same key number in the corresponding LSE figure.  In this example, the study  
represented by key number 18 has been used  to derive a NOAEL and a Less Serious LOAEL  
(also see the  two "18r" data points  in sample Figure 3-1).  

 
(5) 	 Species.   The test species, whether animal or human, are  identified in this  column.  Chapter  2,  

"Relevance to Public Health," covers the relevance of  animal data to human toxicity and  
Section  3.4, "Toxicokinetics," contains any available information on comparative  toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated  to equivalent  
human doses to derive an MRL.  

 
(6) 	 Exposure Frequency/Duration. The duration of  the study and the weekly and daily exposure  

regimens are provided  in  this column.  This permits comparison of NOAELs and  LOAELs from  
different studies.  In this case (key number 18), rats were exposed to  “Chemical  x” via inhalation  
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete  review of the dosing regimen, 
refer  to the appropriate sections of  the text or  the original reference paper (i.e., Nitschke et al.  
1981).  

 
(7) 	 System.  This column further defines the systemic effects.   These systems include respiratory,  

cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and  
dermal/ocular.   "Other" refers to any systemic effect  (e.g., a decrease in body weight) not  covered  
in these systems.  In the example of key number 18, one systemic effect  (respiratory) was 
investigated.  

 
(8) 	 NOAEL.  A NOAEL is the highest  exposure level  at which no harmful effects were seen in  the 

organ system studied.  Key  number 18 reports a NOAEL of 3  ppm  for the respiratory  system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005  ppm (see 
footnote  "b").  

 
 

***DRAFT FOR PUBLIC COMMENT*** 



   
 

 
 
 

 
 
 
 

  

 

B-4 TETRACHLOROETHYLENE 

APPENDIX B 

(9) 	 LOAEL. A LOAEL is the  lowest dose used in the study that caused a harmful health effect.  
LOAELs have been classified into  "Less Serious"  and  "Serious"  effects.   These distinctions help  
readers identify the levels of exposure at which adverse health effects first  appear  and the  
gradation of effects with increasing dose.  A brief description of  the  specific  end point  used to 
quantify the adverse effect  accompanies the LOAEL.   The respiratory effect  reported  in key  
number 18 (hyperplasia) is a Less Serious LOAEL of 10  ppm.  MRLs are  not  derived from  
Serious LOAELs.  

 
(10) 	 Reference. The  complete  reference citation is given in Chapter 9 of the profile.  
 
(11) 	 CEL.  A CEL is the lowest  exposure level associated with  the onset of carcinogenesis in  

experimental or  epidemiologic studies.  CELs are always considered serious effects.   The LSE  
tables and figures do not contain NOAELs for cancer,  but the text may report doses not causing  
measurable cancer increases.  

 
(12) 	 Footnotes.  Explanations of abbreviations or reference notes for data in the LSE  tables are found  

in the footnotes.  Footnote  "b" indicates that the NOAEL of 3  ppm in key number 18 was used to 
derive an MRL of 0.005  ppm.  

 
 
LEGEND  

See Sample  Figure 3-1 (page B-7)  
 
LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the  
reader quickly compare health  effects according to exposure concentrations for particular  exposure  
periods.  
 
(13) 	 Exposure Period.   The same exposure periods appear as in the LSE  table.  In this example, health 

effects observed within the acute and  intermediate exposure periods are illustrated.  
 
(14) 	 Health Effect.   These are the categories of health effects for which reliable quantitative data 

exists.   The same health  effects  appear in the LSE table.  
 
(15) 	 Levels of Exposure.  Concentrations or doses for each  health effect in  the LSE tables are 

graphically displayed in the LSE figures.  Exposure concentration or  dose  is measured on the log  
scale "y"  axis.  Inhalation  exposure is reported in mg/m3  or  ppm and oral exposure is  reported in 
mg/kg/day.  

 
(16) 	 NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical  end point in 

the  rat  upon which an intermediate inhalation exposure MRL is based.  The  key number 18 
corresponds to the  entry  in the  LSE table.  The  dashed descending  arrow indicates the  
extrapolation from the exposure  level of 3 p pm (see entry 18 in the  table)  to the  MRL of  
0.005  ppm (see  footnote  "b" in  the LSE table).  

 
(17) 	 CEL.  Key number 38m is  one of  three  studies for which CELs were derived.  The diamond 

symbol refers to a  CEL for the test  species-mouse.  The number 38 corresponds to the entry in the  
LSE table.  
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(18) 	 Estimated Upper-Bound Human Cancer Risk Levels.  This is the range associated with the upper-
bound for  lifetime cancer  risk of 1 in 10,000 to 1 in 10,000,000.  These  risk levels  are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates  of the slope  of the  
cancer dose response curve at low dose levels (q1*).  

 
(19) 	 Key to LSE Figure. The Key explains  the  abbreviations and symbols used in the  figure.  
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SAMPLE  
1 →	 Table 3-1.  Levels of Significant Exposure to [Chemical x] – Inhalation 

LOAEL (effect) Exposure 
Key to 	 frequency/ NOAEL Less serious Serious (ppm) 
figurea Species duration System (ppm) (ppm)	 Reference 

2 →	 INTERMEDIATE EXPOSURE 

5 6 7 8 9 10 

3 → Systemic ↓ 

18 Rat 
→4 

CHRONIC EXPOSURE 

Cancer 

38 Rat 

39 Rat 

40 Mouse 

↓ ↓ ↓ ↓ 

13 wk Resp 3b 10 (hyperplasia) 
5 d/wk 
6 hr/d 

11 

↓ 

18 mo 20 (CEL, multiple 
5 d/wk organs) 
7 hr/d 

89–104 wk 10 (CEL, lung tumors, 
5 d/wk nasal tumors) 
6 hr/d 

79–103 wk 10 (CEL, lung tumors, 
5 d/wk hemangiosarcomas) 
6 hr/d 

↓ 

Nitschke et al. 1981 

Wong et al. 1982 

NTP 1982 

NTP 1982 

12 →	 a The number corresponds to entries in Figure 3-1. 
b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10-3 ppm; dose adjusted for intermittent exposure and divided 
by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability). 
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APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD/C benchmark dose or benchmark concentration 
BMDX dose that produces a X% change in response rate of an adverse effect 
BMDLX 95% lower confidence limit on the BMDX 
BMDS Benchmark Dose Software 
BMR benchmark response 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CL ceiling limit value 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
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DOT Department of Transportation 
DOT/UN/ Department of Transportation/United Nations/ 

NA/IMDG North America/Intergovernmental Maritime Dangerous Goods Code 
DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank 
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
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MCL maximum contaminant level 
MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OTS Office of Toxic Substances 
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OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic 
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
RfC reference concentration 
RfD reference dose 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase 
SGPT serum glutamic pyruvic transaminase 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
WHO World Health Organization 
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> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
μm micrometer 
μg microgram 
q1 

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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APPENDIX D.  INDEX  

absorbed dose............................................................................................ 154, 158, 160, 161, 182, 190, 209  
acetylcholine ....................................................................................................................................... 92, 173  
adenocarcinoma .......................................................................................................................................... 69  
adenocarcinomas ......................................................................................................................................... 95  
adipose tissue .................................................................................... 142, 148, 149, 150, 158, 208, 265, 273  
adrenal gland ............................................................................................................................... 69, 120, 150  
adrenal glands ............................................................................................................................. 69, 120, 150  
adsorption.................................................................................................................................................. 269  
aerobic............................................................................................................................................... 239, 240  
alanine aminotransferase (see ALT) ........................................................................................................... 64  
ALT (alanine aminotransferase) ......................................................................................... 64, 116, 117, 118  
ambient air .......................................................................................................... 73, 180, 238, 242, 247, 249  
anaerobic ................................................................................................................................... 239, 240, 241  
anemia ....................................................................................................................................................... 115  
aspartate aminotransferase (see AST) ......................................................................................................... 64  
AST (see aspartate aminotransferase) ................................................................................. 64, 117, 118, 174  
bioaccumulation ................................................................................................................................ 237, 259  
bioavailability ........................................................................................................................................... 259  
bioconcentration factor ............................................................................................................................. 237  
bioconcentration factors ............................................................................................................................ 237  
biodegradation........................................................................................................................... 239, 240, 241  
biomarker .................................................................................................................................. 139, 181, 182  
biomarkers................................................................................................... 71, 139, 181, 182, 184, 263, 273  
blood cell count ..................................................................................................................................... 59, 73  
blood cell counts ................................................................................................................................... 59, 73  
body weight effects ............................................................................................................................. 70, 121  
Body Weight Effects ........................................................................................................................... 70, 121  
breast milk......................................................... 116, 162, 180, 188, 202, 208, 248, 254, 260, 261, 263, 264  
cancer ................................................................... 4, 7, 11, 12, 20, 59, 60, 62, 92, 93, 95, 97, 124, 130, 131,  

135, 171, 173, 175, 179, 191, 193, 198, 205, 206, 282  
carcinogen ............................................................................................................... 4, 12, 277, 278, 280, 282  
carcinogenic .................................................................. 4, 12, 14, 21, 22, 132, 198, 199, 277, 278, 281, 282  
carcinogenicity ............................................................ 7, 12, 93, 95, 120, 132, 152, 154, 173, 175, 198, 210  
carcinoma .............................................................................................................................................. 96, 97  
carcinomas .......................................................................................................................................... 62, 132  
cardiac arrhythmia .......................................................................................................... 22, 57, 58, 189, 191  
cardiac arrhythmias ................................................................................................................................... 189  
cardiovascular ......................................................................................................... 23, 57, 99, 133, 205, 206  
cardiovascular effects.................................................................................................... 57, 99, 133, 205, 206  
Cardiovascular Effects .................................................................................................................. 57, 99, 133  
cholinesterase .............................................................................................................................................. 83  
chromosomal aberrations .................................................................................................................. 135, 138  
clearance ................................................................................................................................... 149, 156, 162  
death............................................................ 10, 21, 22, 24, 61, 95, 97, 98, 99, 124, 133, 149, 184, 191, 282  
deoxyribonucleic acid (see DNA) ............................................................................................... 84, 136, 137  
dermal effects...................................................................................................................................... 24, 120  
Dermal Effects .................................................................................................................................. 120, 134  
developmental effects ............................................................................. 13, 90, 92, 135, 180, 202, 206, 211  
Developmental Effects ................................................................................................................ 90, 128, 135  
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DNA (see deoxyribonucleic acid)............................... 84, 119, 135, 136, 137, 138, 139, 140, 174, 181, 198  
dopamine..................................................................................................................................................... 92  
endocrine............................................................................................................................. 69, 120, 177, 178  
endocrine effects ................................................................................................................................. 69, 120  
Endocrine Effects ................................................................................................................................ 69, 120  
erythema.................................................................................................................................... 134, 148, 191  
fetus ............................................................................................. 10, 141, 149, 151, 178, 179, 180, 187, 208  
gastrointestinal effects ................................................................................................................................ 58  
Gastrointestinal Effects ....................................................................................................................... 58, 115  
general population............................................................................... 10, 188, 201, 249, 250, 260, 273, 282  
genotoxic............................................................................................................. 21, 135, 138, 175, 187, 199  
genotoxicity....................................................................................................................... 135, 140, 187, 198  
groundwater ...........2, 6, 9, 115, 123, 223, 230, 231, 232, 234, 235, 236, 239, 246, 247, 259, 260, 271, 281  
growth retardation ................................................................................................................... 13, 90, 91, 201  
half-life.................................................................................. 9, 154, 157, 158, 159, 171, 181, 233, 238, 258  
hematological effects ................................................................................................................................ 115  
Hematological Effects......................................................................................................................... 59, 115  
hepatic effects ......................................................................................... 13, 62, 64, 116, 117, 118, 133, 186  
Hepatic Effects.............................................................................................................. 60, 62, 116, 133, 173  
hydrolysis .................................................................................................................................. 238, 259, 265  
hydroxyl radical ................................................................................................................................ 238, 242  
immune system ............................................................................. 10, 13, 18, 20, 71, 73, 172, 196, 203, 277  
immunological ........................................................ 21, 71, 73, 122, 124, 134, 191, 202, 203, 205, 206, 282  
immunological effects................................................................................. 71, 122, 191, 202, 203, 205, 206  
Kow .................................................................................................................................................... 215, 258  
LD50....................................................................................................................................................... 98, 99  
leukemia ............................................................ 4, 12, 64, 74, 95, 97, 99, 120, 122, 130, 131, 132, 171, 175  
lymphoreticular ................................................................................................................... 95, 122, 124, 134  
menstrual................................................................................................................................... 13, 69, 85, 87  
micronuclei ....................................................................................................................... 138, 139, 141, 199  
milk ..................................................... 72, 127, 141, 149, 162, 171, 189, 208, 248, 254, 260, 261, 264, 266  
musculoskeletal effects ....................................................................................................................... 60, 133  
Musculoskeletal Effects .............................................................................................................................. 60  
neonatal ..................................................................................................................................................... 261  
neoplasm ............................................................................................................................................. 95, 171  
neurobehavioral................... 10, 11, 12, 16, 17, 18, 19, 20, 74, 77, 78, 82, 92, 124, 125, 171, 177, 180, 201  
neurochemical ....................................................................................................................... 14, 92, 181, 201  
neurodevelopmental .................................................................................................................... 91, 193, 201  
neurological effects ............. 15, 19, 76, 84, 85, 124, 126, 127, 135, 193, 195, 196, 198, 202, 204, 205, 206  
Neurological Effects ........................................................................... 74, 76, 82, 83, 85, 124, 126, 134, 173  
neurotransmitter ........................................................................................................................................ 210  
non-Hodgkin’s lymphoma .............................................................................. 4, 11, 12, 93, 94, 97, 131, 198  
nuclear........................................................................................................................................... 68, 69, 122  
ocular effects ....................................................................................................................................... 99, 134  
Ocular Effects ..................................................................................................................................... 70, 134  
odds ratio..................................................................................................................................................... 72  
partition coefficients ......................................................................................... 142, 145, 149, 169, 180, 188  
pharmacodynamic ..................................................................................................................................... 163  
pharmacokinetic .......................................... 11, 16, 18, 19, 20, 162, 163, 165, 168, 172, 187, 188, 209, 210  
pharmacokinetics .............................................................................................................. 178, 188, 190, 209  
photolysis .................................................................................................................................................. 238  
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placenta ............................................................................................................. 141, 149, 151, 180, 187, 208  
rate constant .............................................................................................................................................. 238  
renal effects ............................................................................... 13, 65, 67, 68, 118, 119, 133, 175, 176, 184  
Renal Effects ................................................................................................................. 65, 67, 118, 133, 175  
reproductive effects............................................. 13, 85, 88, 89, 90, 127, 128, 135, 191, 199, 200, 205, 206  
Reproductive Effects............................................................................................................. 85, 87, 127, 135  
respiratory effects............................................................................................................................ 24, 73, 99  
Respiratory Effects................................................................................................................................ 24, 99  
retention .............................................................................................................. 76, 146, 190, 250, 271, 272  
salivation ..................................................................................................................................................... 84  
serum glutamic oxaloacetic transaminase (see SGOT)............................................................................... 61  
serum glutamic pyruvic transaminase (see SGPT) ..................................................................................... 61  
SGOT (see serum glutamic oxaloacetic transaminase)................................................................. 61, 62, 184  
SGPT (see serum glutamic pyruvic transaminase) ............................................................... 61, 62, 117, 184  
solubility ................................................................................................................... 148, 223, 233, 235, 258  
spermatogonia ............................................................................................................................................. 88  
systemic effects ..................................................................................................................... 24, 99, 188, 194  
Systemic Effects............................................................................................................................ 24, 99, 133  
T3 ........................................................................................................................................................ 25, 100  
thyroid ....................................................................................................................................................... 120  
toxicokinetic................................................................................................................................................ 21  
toxicokinetics ............................................................................................................................ 142, 164, 170  
tremors ........................................................................................................................................................ 98  
tumors ................................................................. 4, 10, 12, 64, 93, 95, 97, 98, 130, 135, 171, 172, 175, 198  
vapor pressure ........................................................................................................................... 223, 233, 258  
volatility ............................................................................................................................ 230, 231, 232, 267  
volatilization ..................................................................................................................... 223, 233, 234, 235  
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